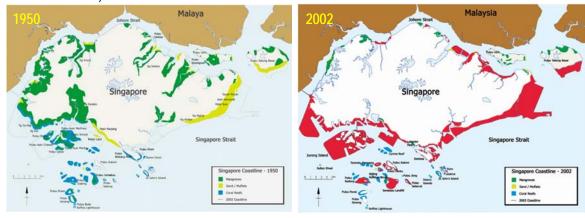


ON-SHORE AND OFF-SHORE COMPACTION FOR A RECLAMATION PROJECT

Kenny Yee

ON-SHORE AND OFF-SHORE COMPACTION FOR A RECLAMATION PROJECT

- Land Reclamation in Singapore
- A Case History
- Conclusion



LAND RECLAMATION IN SINGAPORE

Land reclamation started as early as 1820s on small scale (reclamation of swamps).

By 1960s – land reclamation started to be large scale (reclamation along the coasts & reclamation of offshore islands).

Prior to 1960: total area was about 582 km² By 1990: total area was 633 km² (increase of ~ 9%) By 2030: total area may increase to 733 km² (increase of ~ 26%)

ISSMGE TC211 Workshop 26 May 2011, Hong Kong 3

NEW DOWNTOWN DEVELOPMENT AT MARINA BAY

Reclamation for the New Downtown @ Marina Bay on *360 hectares* of land reclaimed in the 1970s and completed in *1994* changing the skyline of Singapore to include Marina Bay Sands and the coming Marina Bay Financial Centre.

4

PETROCHEMICAL HUB IN JURONG ISLANDS

Reclamation of Jurong Islands (7 islands into 1) to create a petrochemical hub on an area of *500 hectares*. Completed in *Sept. 2009* (20 years earlier than planned). Jurong Island is home to over 88 leading petroleum / petrochemical companies with more than S\$24 billion in fixed asset investment.

ISSMGE TC211 Workshop 26 May 2011, Hong Kong 5

MEGA-CONTAINER PORTS IN PASIR PANJANG

PSA Singapore Terminals operates 5 container terminals at Tanjong Pagar, Keppel, Brani and Pasir Panjang with a total of 54 container berths.

Pasir Panjang Terminals 1 and 2 are PSA's most advanced terminals. The area is *335 hectares* of reclaimed land with 23 container berths and 87 quay cranes. Started construction in 1993 and completed in *late 2000s*.

6

ON-SHORE AND OFF-SHORE COMPACTION FOR A RECLAMATION PROJECT

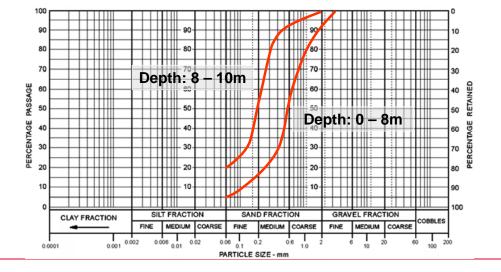
- Land Reclamation in Singapore
- A Case History
- Conclusion

S menard

CASE HISTORY: PASIR PANJANG RECLAMATION 1 & 2

Construction of Pasir Panjang Terminal Phase 1 started in *1993* and Terminal Phase 2 started in *1995*. Both terminals 1 and 2 were completed in *late 2000s*.

Ground improvement consists of *consolidation* of the underlying soft marine clay using vertical drains with fill surcharge; and *compaction* for the loose hydraulic reclaimed sand fill.



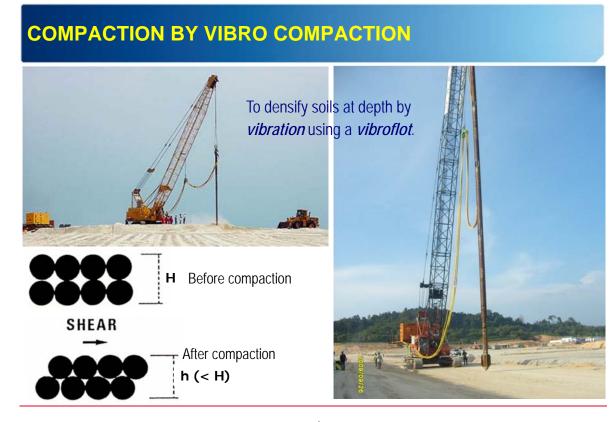
ISSMGE TC211 Workshop 26 May 2011, Hong Kong

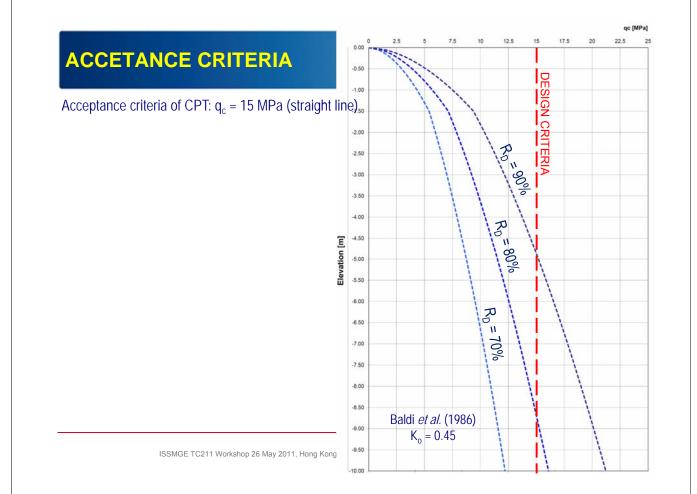
COMPACTION: QUALITY OF RECLAIMED SAND


To densify the 8 – 10m thick hydraulic sand fill

- 0 8m: fine to coarse sand with 3 7% fines and occasionally up to 14% fines.
- 8 10m: marginal coarse sand with 17 20% fines
- > 10m: silt and clay strata (high CPT R_f values)

ISSMGE TC211 Workshop 26 May 2011, Hong Kong

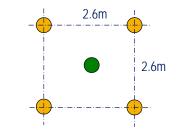

COMPACTION BY DYNAMIC COMPACTION



ISSMGE TC211 Workshop 26 May 2011, Hong Kong 11

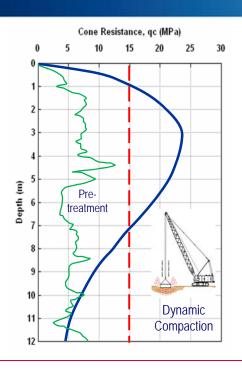


ISSMGE TC211 Workshop 26 May 2011, Hong Kong 13


CHOICE OF COMPACTION METHODS

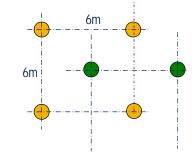
Option 1:

Vibro Compaction


 Compaction grid of 2.6 m ■ down to 10m with a mid point down to 5m depth using a hydraulic vibroflot of 130 kW @ 50 Hz.

- Greater compaction effect at lower depth

ISSMGE TC211 Workshop 26 May 2011, Hong Kong


CHOICE OF COMPACTION METHODS

Option 2:

Dynamic Compaction

 High compaction energy using 18 tons x 22 m drop height x 16 blows over 2 main phases with total DC energy of 430 ton.m/m² incl. ironing phase.

- Greater compaction effect at shallower depth

STAGE 1: DENSIFICATION FROM 5m to 10m EL

Vibro Compaction – taking advantage of *overburden* effect to increase the ease of compaction.

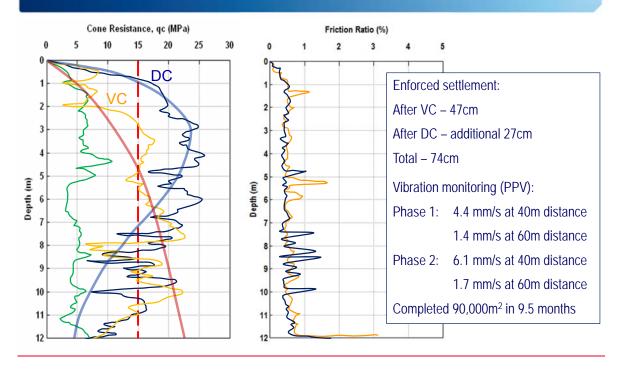
BD400 (PM345) vibroflots:

- 215 kW @ 30 Hz frequency for fine sand
- 34.5 tons centrifugal force.

- Triangular grid of 2.8m (instead of 2.6m):
- (i) compaction pressure of 260 bars.
- (ii) time interval of 60 seconds per lift.

ISSMGE TC211 Workshop 26 May 2011, Hong Kong

STAGE 2: DENSIFICATION FROM 0m to 5m EL


Phase 1: 6m x 6m grid x 14 blows (*instead of 16*)
Phase 2: 6m x 6m grid x 14 blows (*instead of 16*)
Ironing: 2m x 2m grid x 1 blow
Total DC energy: 339 ton.m / m² (*instead of 430*)

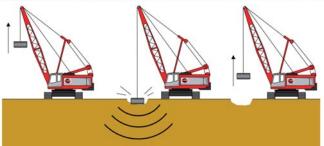
Dynamic Compaction – taking advantage of *higher compaction* effect at shallower depths.

Energy per blow: 15 tons (instead of 18) x 22m drop

POST TREATMENT RESULTS

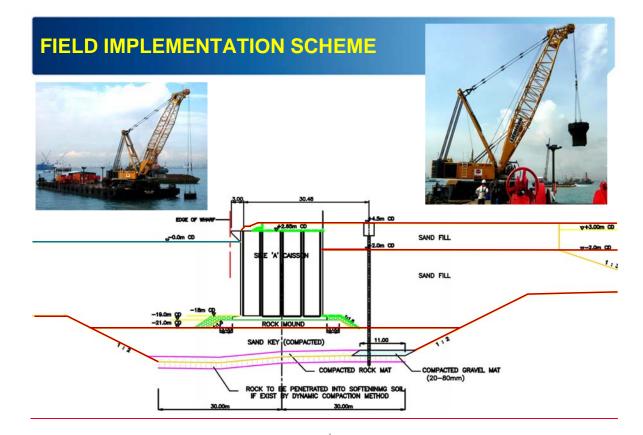
ISSMGE TC211 Workshop 26 May 2011, Hong Kong

PASIR PANJANG RECLAMATION – TERMINAL 3 & 4


Pasir Panjang Terminal Phase 1 and 2 (with 23 container berths) was completed in late 2000s.

Singapore spends S\$2 billion to expand its port to increase annual capacity by more than 50%.

Phase 3 and 4 started in Oct 2007 and to be completed by late 2013 to add 16 container berths and 6km quay length.



DYNAMIC COMPACTION / DYNAMIC REPLACEMENT

- DC ground improvement by *compaction*
- DR ground improvement by *reinforcement*



VARIOUS STAGES OF CONSTRUCTION

ISSMGE TC211 Workshop 26 May 2011, Hong Kong 23

OFF-SHORE DC/DR POUNDER

OFF-SHORE DC/DR POUNDER

25 ISSMGE TC211 Workshop 26 May 2011, Hong Kong

OFF-SHORE DYNAMIC REPLACEMENT

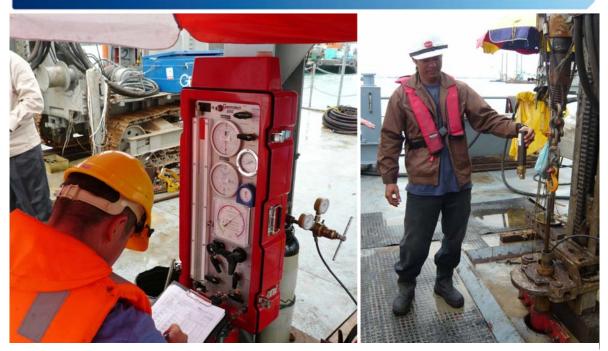
OFF-SHORE DYNAMIC COMPACTION



ISSMGE TC211 Workshop 26 May 2011, Hong Kong 27

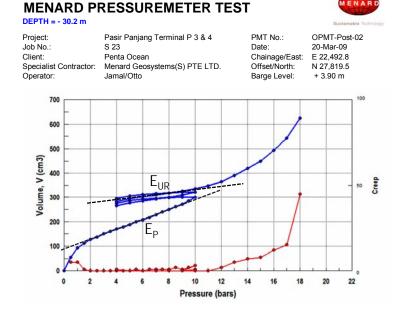
ON-BOARD QA/QC – DC/DR SYSTEM

ON-BOARD QA/QC – GPS SYSTEM

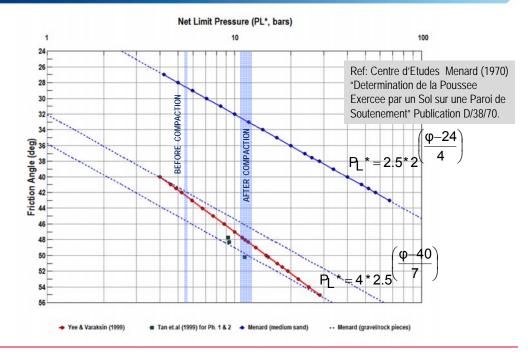


ISSMGE TC211 Workshop 26 May 2011, Hong Kong 29

PMT JACK-UP PONTOON



OFF-SHORE CYCLIC PRESSUREMETER TESTING


To determine the *stress-strain behaviour* and *strength properties* of the soil for *bearing capacity* and *settlement* analysis.

CYCLIC PRESSUREMETER TEST RESULTS

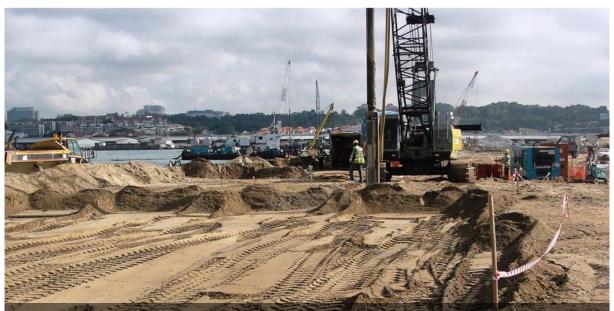
- During test, when there is no return of drilling fluid, it indicates that the test is carried out at the freedraining rock material.
- When testing in impervious clay, there is return of drilling fluid.

ESTIMATING φ-ANGLE FROM PMT

Lowest P_{L, ROCK} = 0.55 bars taken from pre-treatment PMT \Leftrightarrow possible lowest $\phi \approx 42^{\circ}$

POST TREATMENT RESULTS

- Based on echo sounding survey, the average enforced settlement was about 38cm.
- The average diameter of DR columns is about 2.4m \Rightarrow m = 22% against designed m = 15%
- The volume of rock pieces penetrated into the clay layer is about 6.8m³ per column ⇒ average 1.5m penetration of rock column.
- Measured upheaval of soil in-between column is about 20cm.



ON-SHORE AND OFF-SHORE COMPACTION FOR A RECLAMATION PROJECT

- Land Reclamation in Singapore
- A Case History
- Conclusion

S menard

CONCLUSION

 Pasir Panjang Terminal 1 & 2 demonstrated the successful combination of *on-shore dynamic* compaction and vibro compaction for a very high compaction criteria using *CPT* as the QA/QC tool.

• Pasir Panjang Terminal 3 & 4 demonstrated the successful application of *off-shore dynamic compaction* and *dynamic replacement* at 30m below water using *PMT* as the QA/QC tool

