14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering

QC Methods for Deep Vibro Techniques 23-27 May 2011 Hong Kong

Dr. V. R. Raju

Managing Director Keller Foundations (S E Asia) Pte. Ltd.

Deep Vibro Techniques

Applicable soils

Vibro Compaction & Vibro Replacement

Grain Size [mm]

Vibro Compaction Densification of Granular Soils

Vibro Replacement

Introduction of Material (Stone/Concrete) into the Ground

Quality Control in Deep Vibro Techniques

Stages of Work

Soil Investigation & Design

- A. Planning Soil Investigation
- B. In-situ tests
- C. Laboratory Tests
- D. Design

Soil Investigation

Design and Execute an appropriate investigation

- Soil type, fines content, liquefaction potential
- Compressibility, shear strength, sensitivity
- Carbon content (Peat), Carbonate content (shells)
- Extent & depth to hard layer
- Fill, boulders, obstructions

In-situ & Laboratory Tests

- **Determine suitable tests**
 - DPT, CPT, Boreholes, Vane, etc
- Experienced Operator
 - Trained, Certificates, etc
- Proper Equipment
 - Calibration certificates,
 - Service records, etc
- Fully Supervised
 - Experienced supervisor

Design

Determine suitability of ground for treatment

Objective of treatment, Soil engineering properties, Performance criteria

Surroundings

Adjacent structures, Availability of water, etc

Selection of treatment type

 Previous similar experience, Geotechnical considerations, mixed / hybrid solutions

Engineering Design

 Extent, location, depth (full depth or partial depth), obstruction, construction sequencing (stages)

Execution

Execution

- A. Construction Drawings and Method Statement
- **B.** Site Preparation
- C. Treatment
- D. Supervision

Construction Drawings and Method Statement

Approved drawings

- Latest information, design intent, extent, depth, sequencing
- Approved Method Statement
 - Trials, site calibration, methodology, verification, monitoring

Site Preparation

Platform Stability

 Removal of top soil & obstruction, thickness of fill & sand blanket

Drainage Blanket

 Suitable draining material, thickness, drains, maintenance

Use suitable tool

Required compaction effort, water assisted or "dry"

Machinery

Depth dependent (power and weight), water assisted or "dry"

Column Material

Type, Grading curve, Hardness, Durability

Real Time Monitoring

 Ref nr, date, time, depth, duration at each stage, vibrator power consumption, stone consumption

M4 Device

Real Time Monitoring

			o <u> </u>	CURREN	T[A]	24
DEPTH OI	GITAL [H]	20		17 Internet		
					1111	
ŝ			1117	1		
Million						
With						
	1111	113411			1117	1111
- Indiana						
1				鼻		
1				\$,		
1					:::::	
					F	1
<u></u>	1 1 1 1 1	11111	<u></u> 3	CURRE	HTLAJ	<u></u>

KELLER

KELLER

Treatment

Real Time Monitoring

Keller System M5

Treatment

Real Time Monitoring

Keller System M5

Touch Panel Computer

□ M5 with Rig Controller

Vibro Scan

Supervision

- Suitably qualified and experience personnel
- Follow approved drawings and method statement
- Review departure from design basis or unforeseen ground
- Review Real Time Monitoring data

Verification (Post Testing)

Verification

- A. Post-treatment Soil tests
- B. Load tests
- C. Full scale simulation (surcharge, zone tests)

Post-treatment Soil Tests

- Determine changes in soilproperties after treatment
 - In situ tests e.g. CPT

Load Tests

D Plate Bearing Tests

- Useful for shallow treatment, general quality of column head
- Number of tests depending on

extent of treatment

- **Gingle or Group Tests**
 - Group tests more representative of mass treatment to deeper depths

Full Scale Simulation

Zone Tests

- Surcharge over a fairly large area representing future structure
- Normally carried out prior to treatment for uncertain ground or

settlement sensitive structure

Full Scale Simulation (contd.)

Structural Load

- Actual structure loaded e.g. oil tank loaded with water
- Besides design verification,
 can serve as pre-loading to
 reduce long term
 settlement

Conclusions

- Quality awareness and control should be present at all stages of Ground Improvement work – SI, Design, Execution, Post Testing
- Online monitoring of improvement work is essential
- Presentation and review of measured data on a daily basis is important
- Post improvement penetration testing and/or load testing essential for verification of success of ground improvement

Thank you ...