INTRODUCTION

LIGHTWEIGHT FILL TO REDUCE SETTLEMENT ON BRIDGE APPROACH EMBANKMENTS TREATED WITH VIBRO STONE COLUMNS

by

Allan Chwee Yew Lun EG Balakrishnan GCU Consultants Sdn Bhd

INTRODUCTION

- ORIGINAL GROUND TREATMENT
- OBSERVED DISTRESS
- SETTLEMENT BACK ANALYSIS
- PROPOSED RECTIFICATION
- SUMMARY & LESSONS LEARNED

BACKGROUND

The project site of the road overbridge (ROB) is locate at the Northern part of Malaysia.

- Consist of 3 road embankments which form a Tjunction of the ROB.
- The bridge approach embankment is max 10m high and treated with vibro stone column with reinforced soil wall on both sides.
- Pile embankment was used as transition between the embankment on treated ground using stone column and the bridge.

ORIGINAL GROUND TREATMENT

SOIL PROFILE

SIMPLIFIED BORELOGS PROFILE

SCALE 1:300 .

SOIL PROFILE

SIMPLIFIED BORELOGS PROFILE

SCALE 1:300

SOIL PROPERTIES

Unit Weight (kN/m³)A	Shear Strength (kPa)	Void Ratio, e _o	Compression Index, Cc	Plasticity Index (%)	Liquid Limit (%)
15 - 17	10 - 30	2 – 3	0.63 – 0.78	30 - 90	60 - 140

DESIGN CRITERIA

> Total residual post construction settlement within the first seven (7) years of service shall not exceed 400mm.

➤The differential settlement within the first seven (7) years of service shall not exceed 100mm within a length of 50m

ORIGINAL GROUND TREATMENT

 Stone column of minimum diameter of 1m
Spacing of stone column varies with fill embankment heights

Design Fill Height (m)	Stone Column Spacing (m)	Stone column Length (m)
2-4	2.2 x 2.4	12-16
4-6	2.2 x 2.2	12-16
6-7.5	1.9 x 1.9	12-16
7.5-9	1.65 x 1.75	12-16
9-10	1.5 x 1.5	12-16

Distress on RS wall panels was observed while the embankment filling was still in progress along the embankment on treated ground using stone column.

The observed distress were:

- Opening of panels
- High differential settlement

DISTRESS ON RS PANELS

GCU

DISTRESS ON RS PANELS

LARGE GAP MAY DUE TO EXCESSIVE SETTLEMENT

GCU

INSTRUMENTATION

BACK ANALYSIS

- I-Dimensional Consolidation theory was used to back calculate the amount of settlement that has occurred before the installation of instrumentation.
- Analysis was carried out for embankment at three (3) locations of the settlement markers.

Status of Filling

WSM (SI)	ACTUAL FILL HEIGHT (m)	DESIGN FILL HEIGHT (m)	STONE COLUMN SPACING (m)	STONE COLUMN LENGTH (m)
13	6.596	9.942	1.5 x 1.5	15
20	5.570	8.421	1.65 x 1.75	15
21	3.569	7.141	1.9 x 1.9	15

BACK ANALYSIS (CONT'D)

- The measured settlement profile from WSM is matched with the predicted settlement profile generated using 1Dconso theory.
- Comparison is also carried out with settlement curve generated using elastic theory.
- Asaoka's graphical prediction method was adopted to predict the final primary settlement excluding the unmeasured settlement to counter check the back analysis results.

SETTLEMENT-TIME CURVES

ANALYSIS OUTPUT

	Fill boight	Type of Analysis/Measurements					
		1-D Consolidation Theory			Elastic Theory	Asaoka's Method	
Location	used for analysis (m)	Predicted Unmeasured Settlement (mm)	Predicted Settlement (mm) (after inst)	Total Settlement (mm)	Total Settlement (mm)	Predicted Settlement (mm) (after inst)	
WSM 13	6.596	360	449	809	282	430	
WSM 20	5.570	480	515	995	325	460	
WSM 21	3.569	520	347	867	229	330	

Comparison between predicted and measured settlement after the instrumentation installation

RECTIFICATION PROPOSAL

- Reduce embankment loading using Expanded Polystyrene (EPS).
- EPS is an innovative building material that consist of 98% air and 2% plastic which offer an exceptionally lightweight solution to many applications in construction.

1. LIGHT WEIGHT SOLUTION

2. REDUCTION OF STRESS AT FOUNDATION TO DESIRABLE LEVEL

3. MINIMISED RESIDUAL SETTLEMENT TO ACCEPTABLE LEVELS

THE ABOVE IS ACHIEVED BY REDUCING THE ORIGINAL FILL HEIGHTS TO PROVIDE REDUCTION IN STRESS LEVEL AND MINIMISE RESIDUAL SETTLEMENTS

RECTIFICATION PROPOSAL

SCHEMATIC PRESENTATION OF ORIGINAL DESIGN AND EPS SOLUTION

Original Design

EPS Solution

TIME SETTLEMENT CURVE AFTER EPS INSTALLATION

TYPICAL SECTION

CONNECTION DETAILS

PICTURE OF EPS INSTALLATION (1)

PICTURE OF EPS INSTALLATION (2)

PICTURE OF EPS INSTALLATION (3)

PICTURE OF EPS INSTALLATION (4)

SUMMARY & LESSON LEARNED

- Back analysis is used:
 - to estimate past settlement before instrumentation
 - To estimate total settlement due to the embankment fill
 - To estimate settlement due to the replacement of soil with EPS
- Elastic theory has been compared and found to be inappropriate to be used for settlement estimation in soft ground.
- Prediction of settlement in soft ground condition is much more precise and accurate by incorporating 1-D consolidation theory in Priebe method of vibro stone column calculation.

SUMMARY & LESSON LEARNED (CONT'D)

- EXPANDED POLYSTERENE (EPS LIGHT WEIGHT SOLUTION) is proposed as light weight solution to overcome the distress in RS wall.
- Settlement of an embankment with RS wall shall be accessed and considered with the tolerable settlement of RS wall.

THANK YOU

Pilot tests on methods to form working platform on very soft clay

W. Guo¹, L.Q. Sun², J. Chu^{1*}, S.W. Yan² and J.F. Hou³

 ¹ School of Civil & Environmental Engineering, Nanyang Technological University, Singapore.
² School of Civil Engineering, Tianjin University, China.
³CCCC Tianjin Port Engineering Institute Co. Ltd., Tianjin, China, 300222
*E-mail: jcchu@ntu.edu.sg

Methods for	creating a	working platform
--------------------	------------	------------------

(after Chu et al. 2013)

#	Method	Description / Mechanisms	Advantages	Limitations
1	Sun drying	Reduce the water content of soil and form of a desiccation layer	Simple and economical	Very time consuming; Depth of improvement is not sufficient
2	Capping with sand or good earth	Place sand or good earth in thin layers	Relatively cheap	Slow and difficult to implement
3	Use of geotextile	Place a layer of geotextile to the top of soft soil before soil or fill is placed.	Relatively quick and reliable	Expensive & need special equipment
4	Lime or cement mixing	Use lime or cement mixing to strengthen a layer of soil at the top to form a working platform	Relatively reliable	Expensive & difficult to achieve uniformity
5	Dewatering	Use special drainage methods to dewater or consolidate the a layer of soil at the top to form a working platform	Relatively cheap	The method needs to be further developed or verified

Based on settlement data Based on pwp data (Chu and Yan, 2015)								p data , 2015)	
Subzone	S _{PVD}	S _{t=60}	Asac 197	Asaoka, Hyperbol 1978 Method		bolic 10d	$\Delta u_{t=60}$	u _s	U _{h=1.0 m}
	(mm)	(mm)	S _{t=∞} (mm)	U (%)	S _{t=∞} (mm)	U (%)	(kPa)	(kPa)	(%)
CVC B1 60cm	134	524.3	737.0	89.3	774.0	85.1	20.1	80	25.1
FVC D1 60cm	123.3	447.2	814.0	70.1	877.7	65.0	8.59	80	10.7
CVC B3 40cm	312	570.7	938.6	94.0	917.2	96.2	73.7	80	92.1
FVC D2 40cm	141.6	588.3	873.7	83.5	816.8	89.4	63.7	80	79.6

Before vacuum After vacuum preloading								
Subzone	preloading		S _u (kPa)			w (%)		
	w (%)	S _u (kPa)	10 (days)	30 (days)	60 (days)	10 (days)	30 (days)	60 (days)
CVC B1 60cm	83.0	0	4.8	7.1	13.1	55.0	48.5	46.2
FVC D1 60cm	87.8	0	2.6	3.8	5.4	77.9	64.0	57.1
CVC B3 40cm	85.0	0	13.8	21.4	26.4	46.5	44.2	43.4
FVC D2 40cm	83.8	0	10.1	15.3	20.5	59.5	52.5	48.0
FVC D2 40cm 83.8 0 10.1 15.3 20.5 59.5 52.5 48.0								

Cost Comparison								
	Items	Unit price	Amount	Total (¥)				
	PVD installation	2.5 ¥/m ²	7160 m ²	17900				
	Geotextile layer × 2 layers	9.0 ¥/m ²	300 m ²	2700				
	Horizontal drains	3.5 ¥/m	375 m	1312.5				
CNVC	Sand blanket layer	120 ¥/m³	90 m ³	10800				
	Consolidate 60 days	55 ¥/m²	300 m ²	16500				
			Total (¥)	49212.5				
		Unit	164.0					
	Items	Unit price	Amo' .	Total (¥)				
	PVD installation	2.5 ¥/m	537 J m	13,425.8				
	Fish-bone connector	12 ¥/pcs	165 pcs	1980				
	Connectors	2 ¥/pcs	1989 pcs	3978				
	Drainage pipes	3.0 ¥/m ³	20 m ³	5967				
FDVC	Sealing pipes	3.5 ¥/n.	14% <u></u> s	1050				
	Consolidate 90 days	55 ¥/m²	30 m²	16500				
			Tot (¥)	42,900.8				
		Unit	t Cost (¥/m	143.0				
School of Civil and Environmental Engineering								

8

Ground Improvement for Tanks

Authors: Babak Hamidi, ISSMGE TC-211 Serge Varaksin, Apageo, ISSMGE TC-211

19th Southeast Asian Geotechnical Conference & 2nd AGSSEA Conference (19SEAGC & 2AGSSEA) Kuala Lumpur 31 May – 3 June 2016

The obvious, which is occasionally forgotten

- Tank deformations are acceptable as long as
 - · Deformations do not lead to impairment of serviceability
 - Deformations do not create stresses that exceed allowable limits
- Tanks are not framed structures, and implementation of building codes to tanks is insubstantial
- Tanks must be designed based on standards for tanks

Uniform Settlement

- Most standards do not appear to be overly sensitive to this type of tank settlement, but draw attention to its effects:
 - Piping
 - Flexible connections
 - Periodically repositioning the pipe supports

Uniform Settlement

- ACI 376 (concrete structures for the containment of refrigerated liquefied gases)
 - Does not specify limits provided that other provisions of the standard are met, and the connecting piping system accommodates the settlement.

• API 620 (Large, welded, low-pressure storage tanks)

• Does not specify a limit on uniform settlement, but notes that uniformity of support and avoidance of excessive settlement are much more important for tanks that have formed bottom plates than they are in the case of flat-bottom, vertical storage tanks.

API 625 (Refrigerated liquefied gas storage tanks systems)

• Notes that the amount of acceptable uniform settlement is dependent upon piping and structural connections between the tank system and adjacent structures.

• API 650 (Welded tanks)

- Does not specify any limits, but specifies that the estimated settlement should be within the acceptable tolerances for the tank shell and bottom.
- Notes that total settlement must not strain connecting piping or produce gauging inaccuracies.
- States that that settlement should not continue to a point at which the tank bottom is below the surrounding ground surface. If a large settlement is expected, the tank bottom elevation should be raised so that the final elevation above grade will be a minimum of 150 mm after settlement.

API 653 (inspection, repair, alteration, and reconstruction of tanks)

• Does not stipulate any limit for total settlements, but notes that for existing tanks with history of successful service, it may be possible to accept greater settlement and distortion of the foundation from a true plane than new tank construction standards allow.

Rigid Body Tilting (Planar Tilting)

- Reduces freeboard
- Alters the shape of the fluid surface, and places additional stresses in the shell

Rigid Body Tilting (Planar Tilting, Global Tilting)

• ACI 376

• Planar differential settlement $\leq 1/500$

• API 625

- Allows variations from the settlement limits that it specifies provided that they are accounted for in the design of the tank system and interconnecting components.
- Comments that while large tanks may be able to accommodate significant tilting without damage, other components usually require lower value of tilt.

$$GT < 25.4 \alpha \frac{D}{H}$$

- GT= global tilt settlement, in mm
- α = 5, but often restricted to lesser values
- D= tank diameter
- *H*= tank height

Out of Plane Settlement

• Radial distortion or overstressing of the shell:

- Can result in the malfunction of a floating roof.
- Can rupture the shell.
- Overstressing the plate & its welds can rupture the shell-bottom plate connection.

Out of Plane (Differential) Settlement

• API 625

- DS= edge to centre of the tank settlement
- TS= around the periphery of the tank differential settlement
- R= tank radius

DS < *R*/240 *TS* < 1/1000

• API 653

- S= deflection
- L= arc length between two points
- *Y*= yield strength
- *E*= Young's modulus
- B_B = maximum height of bulge or depth of local depression, in mm
- R= radius of inscribed circle in bulged area or local depression, in m

$$|S| \le \frac{11L^2Y}{2EH}$$

 $B_B \leq 30.8R$

Case History: Rasgas LNG Tank T-6, Ras Laffan Qatar

- Tank Volume: 140,000 m³
- Internal Steel Tank
 - Internal diameter= 74.3 m
 - Height= 35 m
 - LNG height= 34 m

External Concrete Tank

- External diameter= 76.3 m
- Height= 50⁺ m
- Shell thickness= 800 mm
- Roof thickness= 400-800 mm
- Slab thickness= 500-1000 mm

Ground Conditions

No	Layer	Thickness (m)			
1	Loose sand above GWL	1.5			
2	Loose soil below GWL	2			
3	Weathered limestone	3			
4	Upper limestone	3			
5	Lower limestone	12			
6	Calcareous siltstone	30			
7	Calcareous sandstone	90			
	Layer 1 2 3 4	5 6	7		

	Layer	1	2	3	4	5	6	7
Floy	Тор	+1.5	0.0	-2.0	-5.7	-8.5	-20.5	-50.5
Elev .	Bottom	0.0	-2.0	-5.7	-8.5	-20.5	-50.5	-140
γ_{sat}	[kN/m ³]	14	14	20	25	25	17.5	21
E_{ref}	[MN/m²]	20	10	75	1500	3000	300	600
ν	[-]	0.33	0.33	0.3	0.3	0.3	0.2	0.3
С	[kN/m²]	0	0	0	0	0	0	0
φ	[°]	32	32	40	NA	NA	NA	NA

Design Criteria & Ground Improvement Solution

Design & Acceptance Criteria

- Differential Settlement
 - 1/700
 - Within the ring of the wall & the supported roof and before concreting the joint in the mat.
 - Within the general tank area after concreting the joint and during the hydrotest.
- Total settlement:
 - Edge of the tank's mat: 80 mm
 - Center of the tank: 137 mm

Ground Improvement Solution

- Under the Concrete Shell: Shear Ring Trench + Dynamic Compaction
- Inside tank: Stone filled columns + Dynamic Compaction

1 😫 👹 🛛

Design

	Layer	1	2	3	4	5	6
Elev	Тор	+2.25	+1.5	-0.6	-3.5	0	-1.5
	Bottom	+1.5	0.0	-3.5	-5.5	-1.5	-3.5
γ_{sat}	[kN/m ³]	20	15	15	25	20	20
E _{ref}	[MN/m²]	80	45.2	45.2	45.2	59.43	44.57
ν	[-]	0.3	0.3	0.3	0.3	0.3	0.3
С	[kN/m²]	0	0	0	0	0	0
φ	[°]	36	33	33	40	42	42

1111.

1 transition layer

2 DR1 layer in tank

3 DR2 layer in tank

4 DR3 layer in tank

5 DC layer above ground water level in trench

6 DC layer below ground water level in trench

12

Design & Numerical Analysis

Design & Numerical Analysis

Dynamic Compaction & Dynamic Replacement

Testing & Quality Control

- Geotechnical
 - 25 Menard Pressuremeter Tests
 - $E_{y \ average}$
 - DR columns= 75 MPa
 - Trench= 70 MPa
 - DC=37 MPa
 - 14 plate load tests
 - Diameter=1000 mm
 - Twice the service load
 - **Hydro Testing**

Solution	Load case	U _{Yoentre} (cm)	U _{Yedge} (cm)	U _{Ycentre} (ст)	U _{Yedge} (cm)	Maximum Differential settlement
		D	ESIGN	ACTU	JAL	DESIGN
DR + DC	Step 1 (Ring beam+Wall)	-	2.143	-	0.478	0.69/700
	Step 2(Roof)	0.666	0.835		0.617	0.25/700
	HydroTest	5.222	4.635	1.800	0.900	0.32/700
	Operation	4.481	4.286			0.30/700

Case History: Oil Tanks in Louisiana, USA

Five oil tanks

- Tank material: Steel
- Diameters
 - Three tanks: 39.6 m
 - Two tanks: 45.7 m
- Height = 12.8 m
- Maximum tank load: 130 kPa
- Additional platform fill load: 16 kPa

- Fill: to depths of 0.15 to 1.2 m
- Soft to medium stiff silty clays with some trace of organic matter and localised sand pockets: to depths of 4 to 6 m
- very soft clay with silt and sand: to depths of 20 to 24 m.
- Thin sand layer was also identified at an approximate depth of 21 m.
- Medium stiff to stiff clay with fine sand pockets and shell fragments: to depths of up to 32 m.
- Stiff to very stiff silty to sandy clays to depths of about 34 m
- Very dense silty sands
- Groundwater level was quite high and at less than 1 m below ground level.

Acceptance Criteria & Ground Improvement Solution

Acceptance Criteria

- Center Deflection: 100 mm
- Uniform settlement: 200 mm
- Tank bottom settlement: 50% of API 653 three years after hydro testing
- Ground Improvement Solution: Controlled Modulus Columns (CMC)
- CMC to depth of 21 m (thin sand layer) with replacement ratio
 - Diameter: 318 mm
- CMC to depth of 34 m with lower replacement ratio
 - Diameter: 470 mm

Design

- 3D finite element analysis modeling a quarter of the tank
- 3D thin slice of the tank
- Hand calculation using Terzaghi's analysis method for rafts on floating piles

CMC Installation to depth of 34 m (World Record at that Time)

Testing & Quality Assurance

Zone Load Test

- Test area: 13.7 x 13.7 m²
- Load box: 6.1 x 6.1 x 9.75 m³
- 30 CMCs
- Loaded to maximum design load of 143 kPa
- 10 Vibrating wire Piezometers: measure pore water pressure
- 9 Vibrating wire rebar strain gages in CMCs: measure stresses
- 5 Multi-depth settlement gages: measure stain in different layers
- 1 Horizontal extensometer
- 3 Inclinometer
- 4 Settlement plates
 - Three months monitoring
 - Max on load transfer platform: 107 mm
 - Min (on CMC head): 64 mm
 - Max differential: 43 mm (between CMC & grid centre)

Extrapolation of Results to 3 Years

Finite element analysis

- 3D single CMC simplified unit cell with time dependant consolidation analysis
- 3D model of field conditions with adjustment of parameters to account for the results of the 3 month monitoring
- Predicted settlement on load transfer platform after 3 months: 96 mm

Case History: Chiriqui Grande Oil Tanks- Phase II, Panama

Five crude oil steel tanks

- Diameter = 76.2 m ۲
- Height = 20.4 m•
- Product storage height: 18.9 m •
- Roof system: •
 - Internal :floating
 - External: cone type

Ground Conditions based on 8 SPTs & 35 CPTs PANAMA - CHIRIQUI GRANDE PHASE II SPTs MR-1 to MR-6 and HBC1 & HBC6 PANAMA - CHIRIQUI GRANDE PHASE II NSPT Pre-CPTs TK501 to 507 - Centre - HBC01, 06, 11, 16, 21, 26 and 31 qc [MPa] 0 5 10 15 20 25 30 35 45 50 40 17.5 2.5 7.5 10 12.5 15 20 2 2.00 1.00 Working platform: +0.50m 0.00 0 -1.00 Ground water level: -1.00m -2 -2.00 -3.00 -4.00 -5.00 **≈** -6.00 -6 -7 00 Σ -8 -8.00 ≽ -9.00 -10.00 -10 -ayer -11.00 -12 -12.00 Ξ E -13.00 Elevation -14.00 -14 0 ÷ -15.00 -16.00 -16 -17.00 -18.00 -18 -19.00 ~ -20.00 -20 ()-21.00 -22.00 -22 ≽ -23.00 Layer -24 00 -24 -25.00 -26.00 -26 -27.00 -28.00 -28 -29.00 -30.00 -30 6 5 2 1 0 3 Rf [%] MR-1 MR-2 MR-3 MR-4 MR-5 MR-6 • Average qc Average Rf HBC1 HBC6 Min Average - Max Min, Max qc Min, Max Rf

Design Criteria & Ground Improvement Solution

• Bearing Capacity ≥ 200 kPa with safety factor= 3

Settlements

- Ring wall total settlement \leq to 200 mm
- Centre to edge dishing \leq to 150 mm
- Out of plane settlement ≤ 10 mm in an arc distance of 24.4 m

Ground Improvement Solution

- Wet top feed Stone Column
 - Diameter: 1.06 m (17.1% replacement ratio)
 - Spacing: 2.44 m triangular
- Prefabricated Vertical Drains (wick drains)
 - Spacing 0.91 m
 - Depth: up to 28 m
- Preloading
 - Height: 13 to 14 m (285 kPa)
 - Preloading placement duration: 3 to 4 weeks
 - Preloading period from placement completion: 7 to 9 weeks
 - Treatment diameter per tank: 95 m

Prefabricated Vertical Drains, Stone Columns & Preloading

Testing & Quality Assurance

- 8 settlement plates on shell, 1 at centre
- 3 pore pressure transducers in line along a
 - -16 m RL (PVD & Stone Columns)
 - -23 m RL (PVD only)

- Pore pressure cells
- 3 Inclinometers (only in T-503 & T-505)
- 3 total earth pressure cells
 - 2 Stone Columns
 - 1 in between Columns (only in T-505 & T-507)

Typical Preloading Settlement & Monitoring Results

Elevation -16m (Zone with stone columns & wick drains)

Average Excess Pore Pressure of Pz-A in kPa →No clogging effect

Elevation -23m (zone with wicks drain only)

Average Excess Pore Pressure of Pz-B and C in kPa

Tank T-506 Hyperbolic Analysis

Tentative Back Analysis & Creep Prediction

	Tank #	503	504	505	506	507	Averages
Coomotry	Treatment base elevation (m)	-27.0	-26.5	-27.0	-27.0	-26.5	-26.8
Geometry	Demucking base elevation (m)	-3.5	-4.0	-3.5	-4.0	-6.2	-4.2
Preload intensity		310 kPa	292 kPa	286 kPa	300 kPa	294 kPa	296.4
Primary consolidation prediction	Oedometric + lateral under preload (ult.settlements hyperbolic method)	1.63	1.97	1.92	2.07	1.74	1.86
	Settlement at end of preloading (centre)	1.55	1.78	1.77	2.05	1.62	1.75
Settlements	Settlement at end of preloading (edge)	1.28	1.32	1.24	1.50	1.33	1.33
	Settlement ratio (edge/centre)	0.83	0.74	0.70	0.73	0.82	0.76
	Time elapsed since installation of half of the preload	76 days	70 days	61 days	73 days	71 days	70 days
Degree of	From settlements	95%	90%	92%	99%	91%	94%
achieved	From pore pressures	96%	96%	90%	91%	90%	93%

• Less settlements for T-503 due to better ground conditions

- Settlements at the edges: 70 83% of settlements at the centre
- Degree of consolidation: 90 96% (settlement or excess pore water pressure)

Estimated Future Settlements

- Estimated re-compression + 50 year creep settlements: 16 20 cm in centre of tanks
- Estimated dishing settlements ≤ 6 cm
- Estimated re-compression during hydrotest: 4 to 5 cm
- Actual settlement during: 3.5 to 5.7 cm
Thank You

KELLER

Development of Deep Soil Mixing Technique for Earth Retention in Malaysia

- Prasad. P.V.S.R., Yee. Y.W., and Raju. V.R

Keller Malaysia

Deep Soil Mixing (DSM)

The mechanical mixing of in-situ soils with a binder

Increase in shear strength, stiffness and reduced permeability

The DSM Process

The DSM Process

Quality Assurance - Automated Data Acquisition & Control

Applications

Earth Retention (using Bending Resistance)

KEL

Alternative Retaining System

- No rock socketing
- No bending
 - No steel & concrete
 - No anchors, no struts
- Use gravity and friction !

International Conference & Exhibition on Tunnelling & Underground Space (ICETUS2015) 3-5 March 2015 Kuala Lumpu

Earth retention using a DSM Gravity Wall

2007 - Fraser business Park – 5m deep

7m deep basement excavation
5m deep DSM block

2008 - Southgate city - 6m deep

7m deep basement excavation
3m to 6m deep DSM block

2011 - Wisma IAV, Jalan Pasar – 8m

Max. 9.5m basement excavation
5m to 8m deep DSM block

Hard and the second second

2015 - Wisma Infinitum – 9m deep

16m deep basement excavation
8m to 9m deep DSM Block

2015 – KVMRT Maluri Portal – 10m

Max. 15m deep basement excavation
10m deep DSM Block

Conclusion

- Earth retention to 10m depth is possible using DSM without
 - drilling in Limestone
 - steel and concrete
 - spoil !
 - leaks !!
- However special care should be taken with respect to
 - geotechnical engineering on site and the design office
 - quality control and monitoring during construction
- An innovative method for excavation support !
 - Particularly over KL Limestone

THANK YOU

KELLER

A I L MA

19th SEAGC & 2nd AGSSEA Conference 31st May – 2nd June 2016

Twenty Years of CMC Successful Application

Jerome RACINAIS¹, Benjamin THOMAS¹ & Richard ONG²

¹Menard SNC, Nozay, France ²Menard Asia, Subang Jaya, Malaysia

What is CMC? 20 years successful application of CMC? Where can I use CMC?

What is CMC?

RIGID INCLUSIONS → Controlled Modulus Column (CMC)

Soil-Inclusion Interaction

Controlled Modulus Columns (CMC)

CMC construction uses a *displacement auger* powered by a very large torque and high static downward thrust. Soil is *displaced* laterally with *minimum spoil* and *no vibration*. Cement grout flows under *low pressure* (<5 bars) as the auger retracts. No in-situ soil mixing or high pressure grouting takes place.

Installation of CMC

Reinforcement with *displacement* using Controlled Modulus Columns (CMC) – column forms with cement – a type of rigid inclusions

Special Displacement Auger

CMC Installation Rig

- High rotation torque
- High static down thrust

Machinery Setup

Monitoring on CMC Rig

Control of parameters embedded in the cabin of the rig

Installation Process

Installation by Displacement Method Minimum vibration & disturbance; minimum spoilt (suitable for sensitive soil & structure)

Typical CMC Characteristics

- Diameter: 100 600 mm
- Grout strength: 5 35 MPa
- Allowable load: 5 70 tonnes/CMC
- Spacing: typical 0.8 3.5 m
- Area replacement: typical 1% 8%
- Length: typical 10 m to 25 m

Merits:

- **Densify** and **reinforce** existing ground to create a composite mass
- Urban friendly technology: minimum spoils & noise; vibration free
- *Fast production:* 500 to 3,000 lin.m per rig per shift
- High settlement reduction: up to a factor 10
- High bearing capacity enhancement
- *No in-situ mixing* of soil, results more consistent.
- No structural link with foundations
- No casing, no drilling mud, works in very soft soil SPT=0

Limitations:

- Not for high rise buildings
- Need steel reinforcement in columns if high moment anticipated

20 years of successful application?

- First CMC project in the North of France for the foundation of a stadium with inclusions of around 5 m in length in <u>1996</u>.
- The man behind it...

- Prof. Jean M. Cognon (ENPC & Menard)
- Jun <u>2014</u> Genesis Raceland project: CMCs up to 50 m.

CMC projects worldwide

Evolution of number of CMC projects worldwide

Milestone in rigid inclusion design & execution

Recommendations for the design, construction and control of rigid inclusion ground improvements

Chapter 1: Description, history, initial developments and launching of the national project **Chapter 2**: Operating mechanisms *Chapter 3*: Design methods **Chapter 4**: Design considerations **Chapter 5**: Justifications **Chapter 6**: Geotechnical investigations **Chapter 7: Executions conditions Chapter 8:** Controls and instrumentations

383 pages. Edited in 2013

Applications of CMC

Nghi Son Refinery, Vietnam

Scope of Works:

- CMC for 32 tanks
- Diameter: 24 m to 69 m
- Design loads: 139 kPa to 210 kPa
 + platform load + pad load

(= up to 350 kPa)

Associated engineered earthworks

Works Execution:

- CMC linear: 225,000 lin.m
- Earthworks: 20,500 m³
- Production: 5 months
- 2 to 3 rigs

Nghi Son Refinery, Vietnam

Bridge Crossing, Scotland

Bridge Crossing, Scotland

Shallow foundations on rigid inclusions

Deep foundations

Shallow foundations on rigid inclusions

Deep foundations

Typical Wind Farm Application

Typical Wind Farm Application

Warehouses/Factories in Asia

2 746 CMC \varnothing 420 under isolated footings

* ²⁰⁰⁰ *										* 20/00 *										* ²⁰⁰⁰ *									* 0200 *					
0 	0 0	•★ 0 9000 3000		> °	0 · 0 -	0 	* 3280	0	° G O	0	0 —0	0	0 - 0	4 3000 3000		0 0 -	0 	0 				-	0 0 -	0 -0	0 	3000	0 . E		0 —0	0 0	0 - 0	3200	0 - B	ی م
52°	0	علم ہ ہ ہ		Ŝ	5°	0 0	0 ,		<u>3200</u>		s°2	0 0	0 0	ا_ھ ہ	0	<u>∽</u> ∘	55	0 0	0 0		<u>320</u> 0		\$2)° 	0 0	o↓ 0	0	•	\$5	0	0	0 . *	- <u>0</u> 32	
0	0	0 0	> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ·	0	0	0	0	0	0 ·	0	0	0	0	200 0	० र	
0	0	0 0		0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NO Or		
<u>, 9</u>) / ₀	0		<u>3200</u>	0	s 7	0 0	ہ م	0	<u>3200</u>	o	s7	0	。 •		<u>3200</u>)	<u></u> <u></u> <u></u> 	7	ہ و ہ		<u>320</u>	0	ŝ,	7 0	0 0		<u>32</u> 0		to S	7 <mark>°</mark>	0	0	0	
0	0			0	0	0	32(0-	0	0	0	0	°~`			0	0	0	0		→Ω > φ	0	0	0	- 2		э <u>с</u> эс		0	0	0	0	0	
0	0	0 0		0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ò	0	0	0	0	0	0	¢	
0	0	0 0		0	0	0	0	0	Ŷ	0	0	0	0	0	0. 0	0	0	0	0	0	• •	0	0	0	0	0	• •	0	0	0	0	0	े द	
0	0	0 0		0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>0</u>
	0 0					0	Č T		° P	0		0										- 0	0 0)))) 0		0 0	0 0	0 0	0 - [0	
52		¥	32 00	-	52		*	*	<u>32 00</u>	*	S2		د	*	3200		- S2) -		*	<u>32</u> 0	0	S2) _		*	32(30	łS	2				5600

Concluding Remarks

Figure 2.29: The proposed load transfer mechanisms.

Based on the proposed geometry (Fig. 2.29), a determination can now be made of the share of surcharge Q_p and weight W_p of the granular layer being redirected towards the inclusions via the load transfer zone. Both the efficiency E and capacity G of the granular transfer platform relaying surcharges towards the inclusions can also be deduced in the case of square-section inclusions or pile caps.

$$Q_{\rho} = q \left(a^{2} + 4 a h_{w} \tan \theta + \pi h_{w}^{2} \tan^{2} \theta\right) \text{ for } h_{w} \leq h^{*} = \frac{s-a}{2 \tan \theta}$$

$$(2.17)$$

$$W_{p} = \gamma \left[a^{2} h_{m} + 2 a h_{m}^{2} \tan \theta + \frac{\pi}{3} h_{m}^{3} \tan^{2} \theta \right] \quad \text{for } h_{m} \leq h^{*} = \frac{s - a}{2 \tan \theta}$$
(2.18)

$$E = \frac{W_p + Q_p}{s^2(\gamma \ h_m + q)} \quad \text{and} \quad G = \frac{\left(a^2 + 4 \alpha \ h_m \ tan \ \theta + \pi \ h_m^2 \ tan^2 \ \theta\right)}{s^2}$$
(2.19)

For circular-section inclusions or pile caps, with diameter a, the following are obtained:

$$W_{p} = \frac{\gamma \pi h_{m}}{3} \left[\left(a/2 \right)^{2} + \left(a/2 + h_{m} \tan \theta \right)^{2} + a \left(a/2 + h_{m} \tan \theta \right)/2 \right]$$
(2.20)

$$Q_{p} = q \pi \left(a/2 + h_{w} \tan \theta \right)^{2} \quad \text{for } h_{w} \le h^{*} = \frac{s-a}{2 \tan \theta}$$
(2.21)

$$E = \frac{W_p + Q_p}{s^2 (\gamma h_m + q)} \quad \text{and} \quad G = \frac{\pi \left(a/2 + h_m \tan \theta \right)^2}{s^2}$$
(2.22)

THANK YOU for your kind attention

Q&A?

Richard Ong Regional Technical Director richard@menard-asia.com

