GROUND IMPROVEMENT WORKSHOP 11-12 JUNE 2010 PERTH, AUSTRALIA

CONCEPT AND PARAMETERS IN COHESIVE SOILS WITHOUT ADDED MATERIAL

PRESENTED BY

SERGE VARAKSIN

CHAIRMAN OF T.C. GROUND IMPROVEMENT

Soil Improvement Techniques

	Without added materials	With added materials		
Cohesive soil Peat , clay	1 Drainage 2 Vacuum	<u>4 Dynamic</u> <u>replacement</u>		
		5 Stone columns 6 CMC		
Granular soil	3 Dynamic consolidation	7 Jet Grouting 8 Cement Mixing		
Sand , fill	4 Vibroflottation			

Preloading with vertical drains

High fines contents soils

Vertical drains

CONCEPT

- -Stable subsoil for surcharge
- -Soil can be penetrated
- -Time available is short
- -Some residual settlement is allowed

PARAMETERS

- 1 Depth
- 2 Drainage path
- 3 Cohesion
- 4 Consolidation parameters
- (oedometer, CPT)
- $\textbf{e}_{\text{O}},\,\textbf{C}_{\text{C}},\,\textbf{C}_{\text{V}},\,\textbf{C}_{\text{R}},\,\textbf{C}_{\alpha},\,\textbf{t}$
- CPT pore dissipation test

Radial & Vertical Consolidation

Vertical drains: material

High fines contents soils

Vertical drains: Static installation

High fines contents soils

Static installation of vertical drains

Vertical drains: dynamic static installation

Classical Method: Surcharge + Drain Height of surcharge limited by Value of Cohesion of soft soil

Classical Method: Surcharge + Drain Height of surcharge limited by Value of Cohesion of soft soil

Classical Method: Surcharge + Drain Height of surcharge limited by Value of Cohesion of soft soil

Classical Method: Surcharge + Drain Height of surcharge limited by Value of Cohesion of soft soil

Classical Method: Surcharge + Drain Height of surcharge limited by Value of Cohesion of soft soil

Vacuum Method No limitation: High Surcharge built up in limited period

Vacuum Method No limitation: High Surcharge built up in limited period

Vacuum Method No limitation: High Surcharge built up in limited period

Vacuum Consolidation (high fines contents soils)

Vacuum Consolidation

CONCEPT

- -Soil is too soft for surcharge
- -Time does not allow for step loading
- -Surcharge soil not available
- -Available area does not allow for berns

PARAMETERS

- 1 Depth
- 2 Drainage path
- 3 Condition of impervious soil
- 4 Watertable near surface
- 5 Absence of pervious continuous layer
- 6 Cohesion
- 7 Consolidation parameters (oedometer, CPT) $e_0, C_C, C_V, C_R, C_\alpha, t,$ CPT dissipation test
- 8 Theoretical depression value
- 9 Field coefficient vacuum
- 10 Reach consolidation to effective pressure in every layer
- 11 Target approach

Stress path for Vacuum Process

Vacuum installation

Vacuum installation : vertical drains installation

high fines contents soils

Vacuum installation

Vacuum installation: horizontal drains installation

high fines contents soils

Mechanical installation

Path to pumping system

Vacuum installation

Menard Vacuum: membrane installation

Menard Vacuum: pumping station

Case history: Lübeck Harbour (Germany) - 1997

BAftee

Case history: Kimhae STP (Korea) - 1998

Waste Water treatment plant (soil profile : 40 m deep of soft clay)

Case history: Kimhae STP (Korea) - 1998

Case history: Kimhae STP (Korea) - 1998

17 m of fill on a clay SPT = 0 and C_u < 2 t/m² !!! Initially, impossible to put more than 1.5m without slope failure Average settlement: 4.55m Min settlement: 3.55 Max settlement: 6.05m Pumping time: 7-9 months

Case history - EADS Airbus Plant, Hamburg (Germany)

Case history - EADS Airbus Plant, Hamburg (Germany)

General overview of Airbus site

General overview of Airbus site

Basic design and alternate concept of Moebius-Menard

Soil type	Water content	Density	Shear strength		Deformation Modulus (under σ _z = 100 kN/m ²)	Coefficient of consolidation	Coefficient of secondary consolidation
	W (%)	γ/γ' kN/m ³	δ'(°)/c' (kN/m²)	C _u (k N/m²)	E _S (MN/m²)	C _V (m²/year)	Cα (-)
Mud	142	13/3	20/0	0.5-5	0.8	0.35	0.03
Young clay	119	14/4	20/0	2-10	0.9	0.35	0.03
Clay	70	15/5	17.5/10	5-20	1.5	0.5	0.02
Peaty clay	139	14/4	20/5	5-20	0.9	0.4	0.03
Peat	240	11/1	20/0	5-15	0.5	≥ 0.4	0.04

Vacuum Taxiway - Construction of the impervious wall

Long time behaviour

Long time post construction settlement records

HAMBURG A380

Reclaimed area: Closing Dyke:

New Quay:

Sand: 30,000,000 m **Vertical drains:** Vacuum Consolidation: 90,000 m²

1,2 M m³ Sand 60,000 G.C.C. 1,200 m

170 ha

11 M m³

GROUND IMPROVEMENT WORKSHOP 11-12 JUNE 2010 PERTH, AUSTRALIA

THANK YOU

