GROUND IMPROVEMENT WORKSHOP 11-12 JUNE 2010 PERTH, AUSTRALIA

INTRODUCTION TO SOIL IMPROVEMENT, PARAMETERS, CLASSIFICATION, CASE HISTORY OF KAUST

PRESENTED BY

SERGE VARAKSIN

CHAIRMAN OF T.C. GROUND IMPROVEMENT

STATE OF THE ART REPORT

17TH INTERNATIONAL CONFERENCE ON
SOIL MECHANICS & GEOTECHNICAL ENGINEERING

STATE OF THE ART REPORT

C<mark>onstruction Process</mark>es *Procédés de Construction*

Jian Chu

Nanyang Technological University, Singapore

Serge Varaksin

Menard, France

Ulrich Klotz

Zublin International GmbH, Germany

Patrick Mengé

Dredging International n.v., DEME, Belgium

NOTA: TC 17 meeting ground improvement - 07/10/2009

Website: www.bbri.be/go/tc17

Category	Method	Principle
A. Ground improvement without admixtures in	A1. Dynamic compaction	Densification of granular soil by dropping a heavy weight from air onto ground.
	A2. Vibrocompaction	Densification of granular soil using a vibratory probe inserted into ground.
	A3. Explosive compaction	Shock waves and vibrations are generated by blasting to cause granular soil ground to settle through liquefaction or compaction.
non-cohesive soils or fill	A4. Electric pulse compaction	Densification of granular soil using the shock waves and energy generated by electric pulse under ultra-high voltage.
materials	A5. Surface compaction (including rapid impact compaction).	Compaction of fill or ground at the surface or shallow depth using a variety of compaction machines.
	B1. Replacement/displacement (including load reduction using light weight materials)	Remove bad soil by excavation or displacement and replace it by good soil or rocks. Some light weight materials may be used as backfill to reduce the load or earth pressure.
B. Ground improvement	B2. Preloading using fill (including the use of vertical drains)	Fill is applied and removed to pre-consolidate compressible soil so that its compressibility will be much reduced when future loads are applied.
without admixtures in cohesive soils	B3. Preloading using vacuum (including combined fill and vacuum)	Vacuum pressure of up to 90 kPa is used to pre-consolidate compressible soil so that its compressibility will be much reduced when future loads are applied.
	B4. Dynamic consolidation with enhanced drainage (including the use of vacuum)	Similar to dynamic compaction except vertical or horizontal drains (or together with vacuum) are used to dissipate pore pressures generated in soil during compaction.
	B5. Electro-osmosis or electro-kinetic consolidation	DC current causes water in soil or solutions to flow from anodes to cathodes which are installed in soil.
	B6. Thermal stabilisation using heating or freezing	Change the physical or mechanical properties of soil permanently or temporarily by heating or freezing the soil.
	B7. Hydro-blasting compaction	Collapsible soil (loess) is compacted by a combined wetting and deep explosion action along a borehole.

C. Ground	C1. Vibro replacement or stone columns	Hole jetted into soft, fine-grained soil and back filled with densely compacted gravel or sand to form columns.
	C2. Dynamic replacement	Aggregates are driven into soil by high energy dynamic impact to form columns. The backfill can be either sand, gravel, stones or demolition debris.
improvement with admixtures	C3. Sand compaction piles	Sand is fed into ground through a casing pipe and compacted by either vibration, dynamic impact, or static excitation to form columns.
or inclusions	C4. Geotextile confined columns	Sand is fed into a closed bottom geotextile lined cylindrical hole to form a column.
	C5. Rigid inclusions (or composite	Use of piles, rigid or semi-rigid bodies or columns which are either premade or formed
	foundation, also see Table 5)	in-situ to strengthen soft ground.
	C6. Geosynthetic reinforced column or pile	Use of piles, rigid or semi-rigid columns/inclusions and geosynthetic girds to enhance
	supported embankment	the stability and reduce the settlement of embankments.
	C7. Microbial methods	Use of microbial materials to modify soil to increase its strength or reduce its
		permeability.
	C8 Other methods	Unconventional methods, such as formation of sand piles using blasting and the use
		of bamboo, timber and other natural products.

D. Ground improvement	D2. Chemical grouting	Solutions of two or more chemicals react in soil pores to form a gel or a solid precipitate to either increase the strength or reduce the permeability of soil or ground.
with grouting type admixtures	D3. Mixing methods (including premixing or deep mixing)	Treat the weak soil by mixing it with cement, lime, or other binders in-situ using a mixing machine or before placement
	D4. Jet grouting	High speed jets at depth erode the soil and inject grout to form columns or panels
	D5. Compaction grouting	Very stiff, mortar-like grout is injected into discrete soil zones and remains in a
	D4 Componentian grouting	homogenous mass so as to densify loose soil or lift settled ground.
	D6. Compensation grouting	Medium to high viscosity particulate suspensions is injected into the ground between a subsurface excavation and a structure in order to negate or reduce settlement of the structure due to ongoing excavation.
E. Earth reinforcement	E1. Geosynthetics or mechanically stabilised earth (MSE)	Use of the tensile strength of various steel or geosynthetic materials to enhance the shear strength of soil and stability of roads, foundations, embankments, slopes, or retaining walls.
	E2. Ground anchors or soil nails	Use of the tensile strength of embedded nails or anchors to enhance the stability of slopes or retaining walls.
	E3. Biological methods using vegetation	Use of the roots of vegetation for stability of slopes.

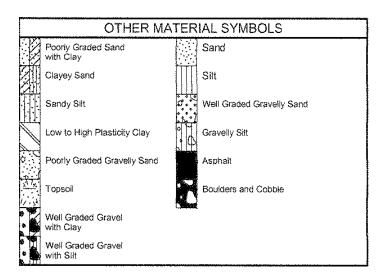

Unified Soil Classification System

TABLE 1 Soil Classification Chart

				Soil Classification	
Criter	ia for Assigning Group Symbols	and Group Names Using La	aboratory Tests ⁴	Group Symbol	Group Name ^B
COARSE-GRAINED SOILS	Gravels (More than 50 % of coarse fraction retained on No. 4 sieve)	Clean Gravels (Less than 5 % fines ^C) -	$Cu \ge 4$ and $1 \le Cc \le 3^D$	GW	Well-graded gravel ^E
			Cu < 4 and/or [Cc < 1 or Cc > 3] ^D	GP	Poorly graded gravelé
		Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{E,F,G}
More than 50 %		(More than 12 % fines ^C)	Fines classify as CL or CH	GC	Clayey gravel ^{E,F,G}
retained on No. 200 sieve	Sands	Clean Sands	$Cu \ge 6$ and $1 \le Cc \le 3^D$	SW	Well-graded sand/
	(50 % or more of coarse fraction passes No. 4 sieve)	(Less than 5 % fines ^H)	Cu < 6 and/or [Cc < 1 or Cc > 3] ^D	SP	Poorly graded sand/
	110. 4 5.010,	Sands with Fines	Fines classify as ML or MH	SM	Silty sand ^{F,G,I}
		(More than 12 % fines ^H)	Fines classify as CL or CH	sc	Clayey sand ^{F,G,I}
FINE-GRAINED SOILS	Silts and Clays	inorganic	PI > 7 and plots on or above *A" line ^J	CL	Lean clay ^{K,L,M}
	Liquid limit less than 50		PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
50 % or more		organic	Liquid limit – oven dried Liquid limit – not dried < 0.75	OL	Organic clay ^{K,L,M,N} Organic silt ^{K,L,M,O}
passes the No. 200 sieve	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
	Liquid limit 50 or more		PI plots below "A" line	МН	Elastic silt ^{K,L,M}
		organic	Liquid limit – oven dried Liquid limit – not dried < 0.75	ОН	Organic clay ^{K,L,M,P} Organic silt ^{K,L,M,Q}
HIGHLY ORGANIC SOILS	Primarily of	organic matter, dark in color	, and organic odor	PT	Peat

UNIFIED SOIL CLASSIFICATION

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils. INDEX (PI) 50 Equation of "A" - line Horizontal at PI=4 to LL=25.5, Ox then PI = 0.73 (LL-20) C/Y Equation of "U"-line Vertical at LL = 16 to PI = 7 PLASTICITY then PI = 0.9 (LL-8)œ MH OR OH 80 90 100 Πo LIQUID LIMIT (LL)

SAMPLE TYPES

X

Split Spoon

Shelby Tube

Rock Core

Grab Sample

ADDITIONAL TESTS

- CHEMICAL ANALYSIS (CORROS/WITY) (200) - (WITH % PASSING NO. 200 SIEVE - CONSOLIDATION SW - SWELL TEST

THE CONSOLIDATION SW - SWELL TEST

CU - CONSOLIDATED UNDRAINED TRIAXIAL TO - CYCLIC TRIAXIAL

DIRECT SHEAR TV - TORVANE SHEAR

P - POCKÉT PENETROMETER (TSF) UC - UNCONFINED COMPRESSION

3.0) - (WITH SHEAR STRENGTH IN KSF) (1,5) - (WITH SHEAR STRENGTH

RV - R-VALUE

SA - SIEVE ANALYSIS: % PASSING

#200 SIEVE

WATER LEVEL (WITH DATE OF)
 MEASUREMENT

IN KSF)

JU - UNCONSOLIDATED

UNDRAINED TRIAXIAL

WA • WASH ANALYSIS
(200%) - (WITH % PASSING NC.

200 SIEVE)

			200 SIEV	t: j
		FRATIÓN RESISTAN PRDED AS BLOWS / 0.8 F		
SAND & GRAVEL		SET & CLAY		
RELATIVE DENSITY	BLOWS/FOOT*	CONSISTENCY	BLOWS/FOOT*	COMPRESSIVE STRENGTH (TSF)
VERY LOOSE	0 - 4	VERY SOFT	0 - 2	0 - 0.26
LOOSE	4 - 10	SOFT	2 - 4	0.25 - 0.50
MEDIUM DENSE	10 - 30	FIRM	4 - 8	0.50 - 1,0
DENSE	30 - 50	STIFF	8 - 15	1.0 - 2.0
VERY DENSE	OVER 50	VERY STIFF	16 - 30	2.0 - 4.0
		HARD	OVER 30	OVER 4.0

NUMBER OF 9LOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE A 2 INCH 0.D. (1-3/8 INCH 1.D.) SPLIT-BARREL SAMPLER THE LAST 12 INCHES OF AN 18-INCH DRIVE (ASTM-1686 STANDARD PENETRATION TEST).

SAMPLING METHODS

2.1 - UD: 2" or 3 ' Shelby Tul	эe
--------------------------------	----

Suitable for cohesive soils **UNDISTURBED**

2.2 – Piston sampler Osterberg

Suitable for cohesive and fine granular soils **UNDISTURBED**

2.3 – SPT: suitable for cohesive and granular Soil **REPRESENTATIVE SAMPLE**

2.4 - Core barrel

Suitable for rock type of soils UNDISTURBED

2.5 – Block sample REPRESENTATIVE SAMPLE

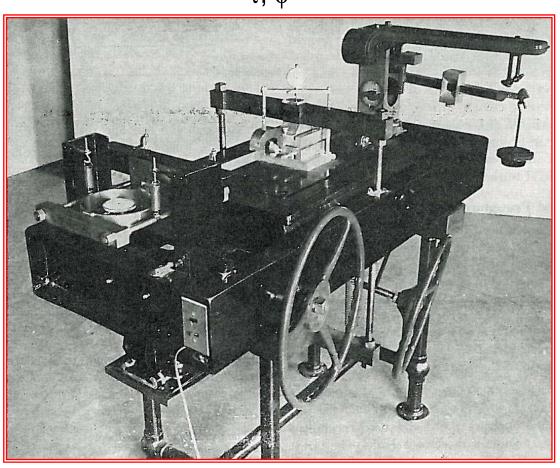
Define terms important for Unified Soil Classification System

Percent Fines

Mechanical Analysis

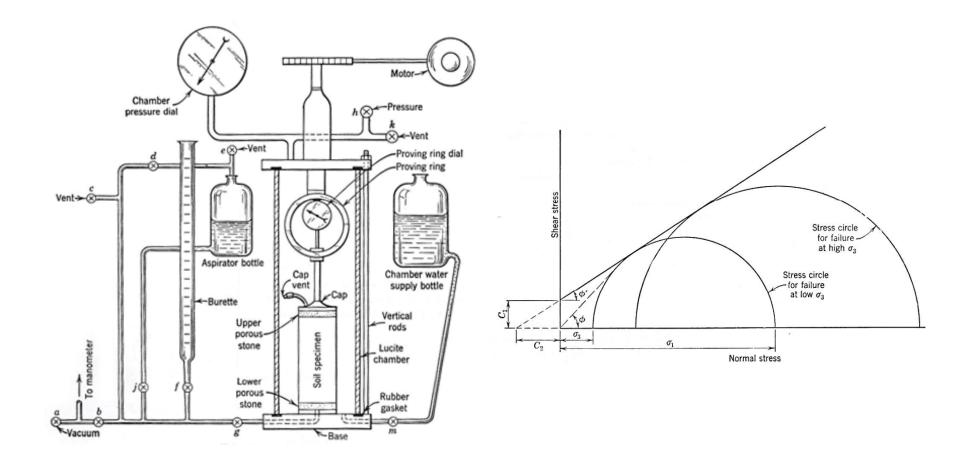
Liquid Limit

Plastic Limit, Plasticity Index

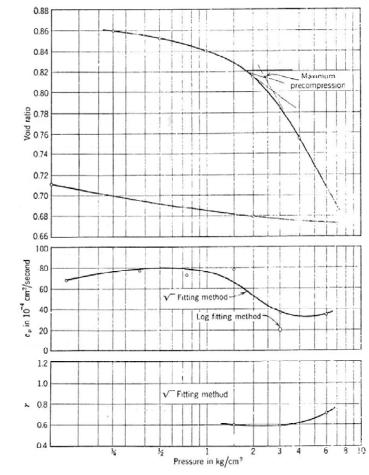

Water Content

Organic

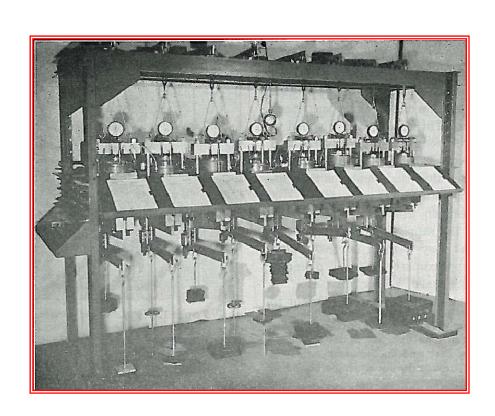
Direct shear test


φ (imposed failure plane)

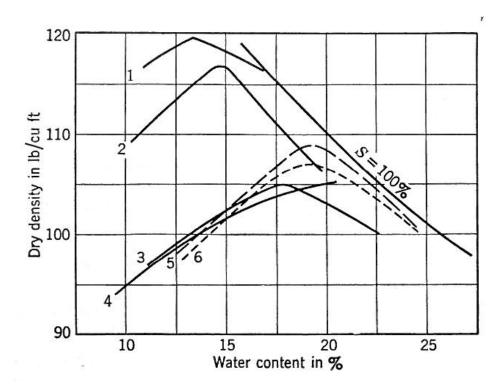
τ, φ



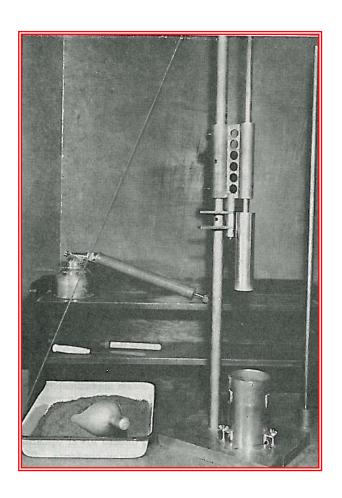
Triaxial on cohesionless soil


φ, Mohr Coulomb curve

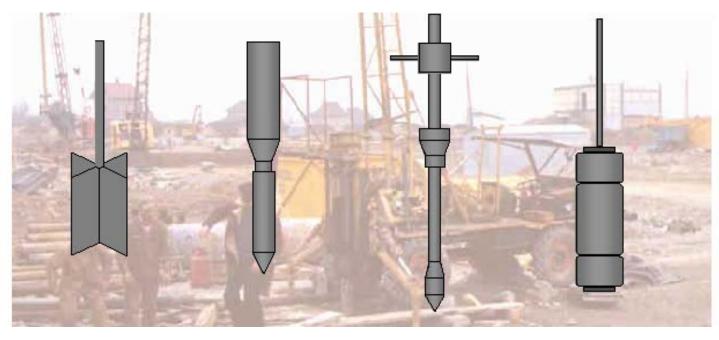
$$W, C_o, C_e, C_v, P_c, k, A_v, C_\alpha$$



Consolidation test

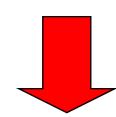


Frame with consolidation units


Proctor Test

w, w_{cpt} , γ_{max} , Proctor curve

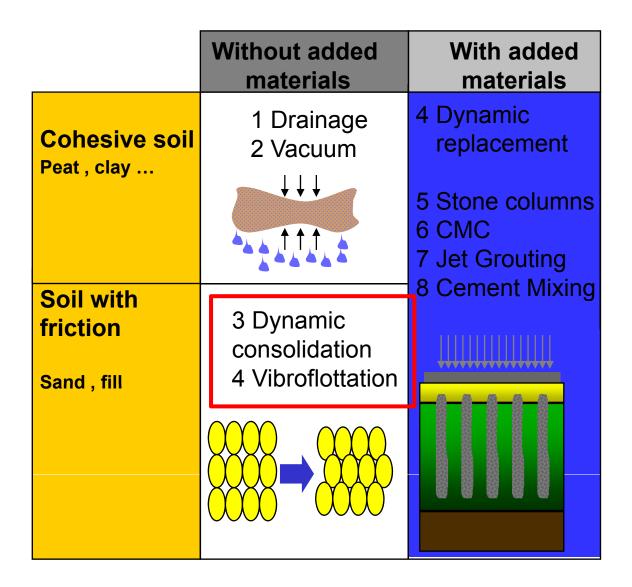
DIFFERENT TYPES OF IN SITU TESTS



VANE TEST (VT) STATIC CONE PENETRATION TEST (CPT) STANDARD
PENETRATION
TEST (SPT)

PRESSUREMETER (PMT)

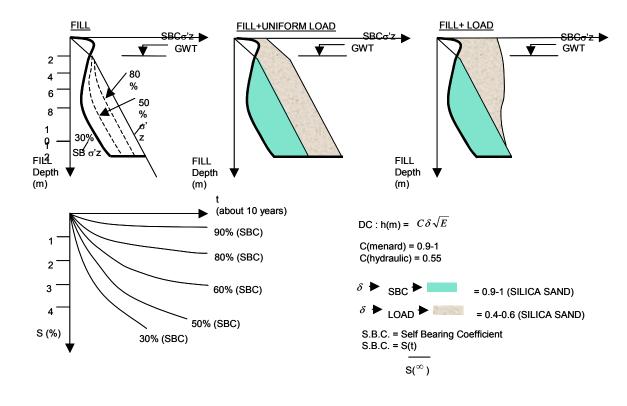
Why Soil Improvement?


- •To increase bearing capacity and stability (avoid failure)
- To reduce post construction settlements
- To reduce liquefaction risk (seismic areas)

Advantages over classical solutions

- Avoid deep foundation (price reduction also on structure work like slab on pile)
- Avoid soil replacement
- Save time
- Avoid to change site
- •Save money!

SOIL IMPROVEMENT TECHNIQUES


PARAMETERS FOR CONCEPT

- Soil characteristics
 - -Cohesive or non cohesive
 - Blocks?
- Water content, water table position
- Organic materials
- Soil thickness
- Structure to support
 - -Isolated or uniform load
 - -Deformability

- Site environment
 - -Close to existing structures
 - -Height constraints
- Available construction time

PARAMATERS FOR CONCEPT

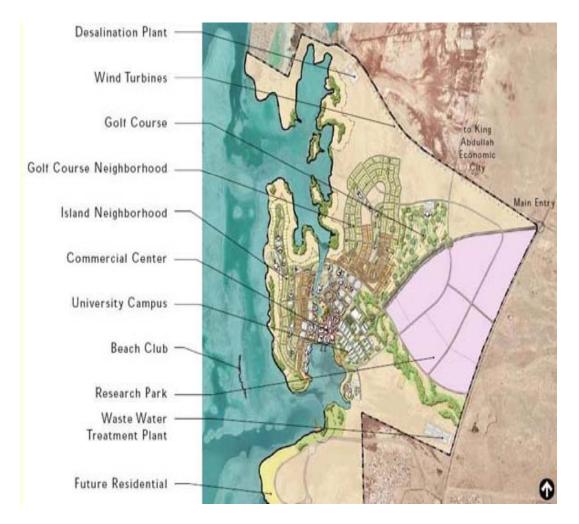
CONCEPT

PARAMETERS

- Age if fill saturated or not
- $-P_L$
- -Selfbearing level
- $-\phi$, E_P or E_M
- $-Q_C, F_R$
- -N
- -R.D. (???)
- -Shear wave velocity
- -Seismic parameters
- -Grain size

CASE HISTORY

Nice International Airport Runway consolidation Granular soil


KAUST PROJECT

Concept and Application of 2,600,000 m² of ground improvement for King Abdulla University of Science & Technology (KAUST)

LOCALISATION

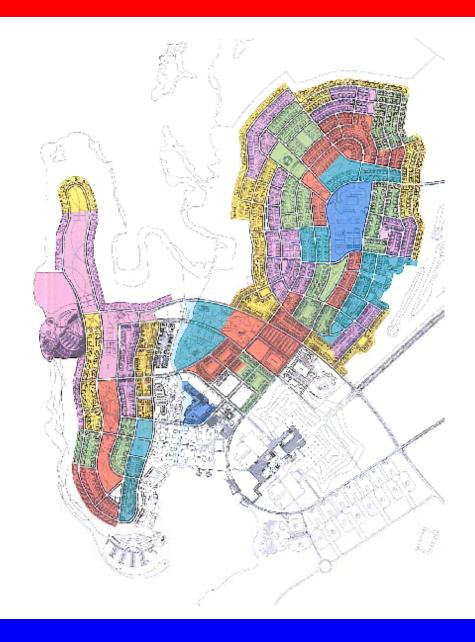
MASTER PLAN

ORIGINAL SITE CONDITIONS

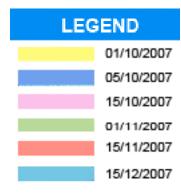
JEDDAH, A MODERN CITY

DISCOVERING THE HABITANTS

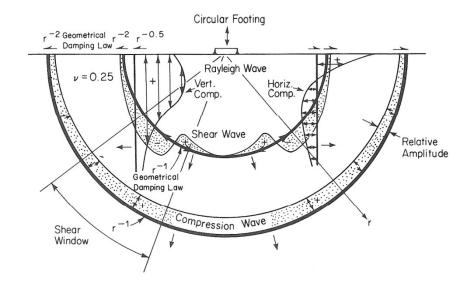
AREAS TO BE TREATED


Areas to be treated

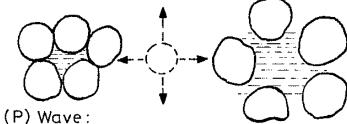
- •Al Khodari (1,800,000 m²
- •Saudi Bin Ladin 720,000 m²

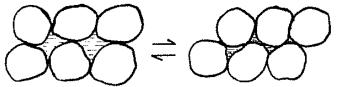

Schedule

•8 months


DATES FOR SOIL IMPROVEMENT

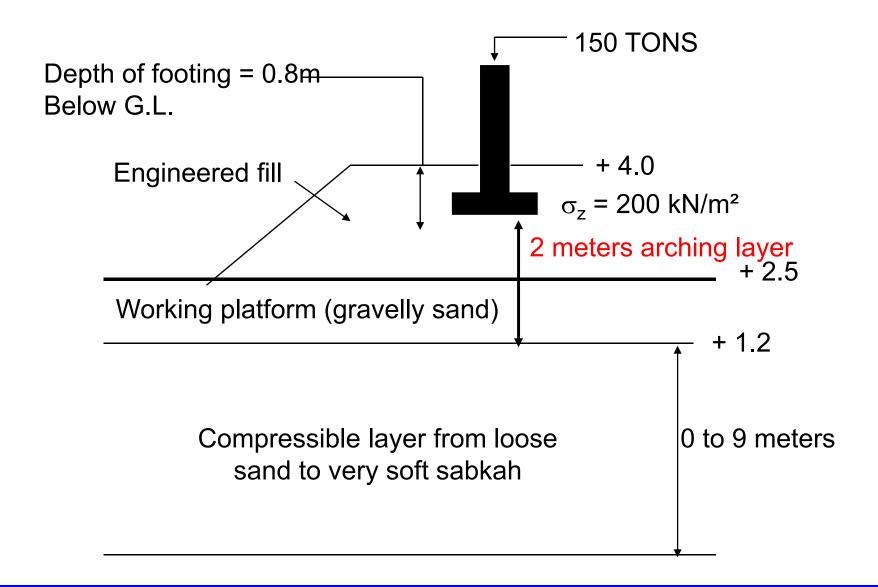
KAUST Dates for soil improvement

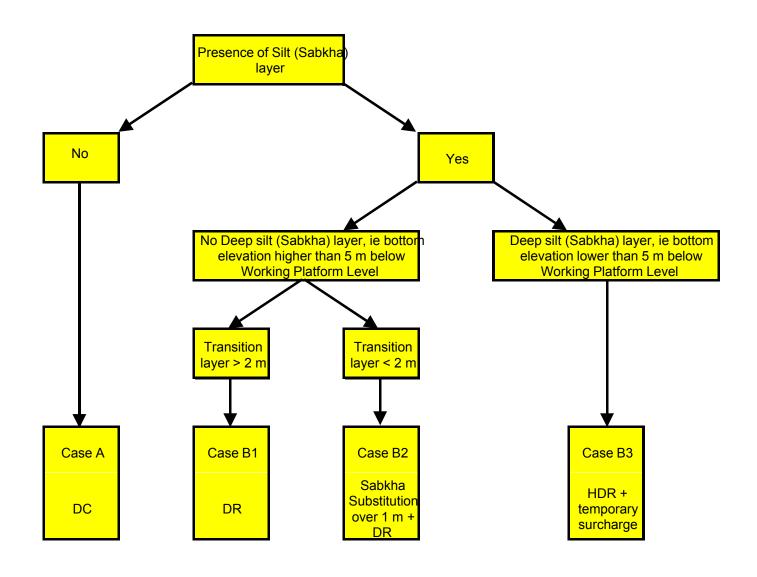

DYNAMIC CONSOLIDATION


Wave Type	Percent of Total Energy
-----------	--------------------------------

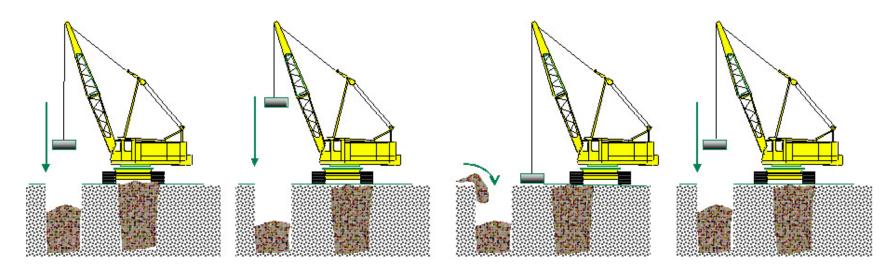
Rayleigh	67
Shear	26
Compression	7

After R.D. Woods (1968)

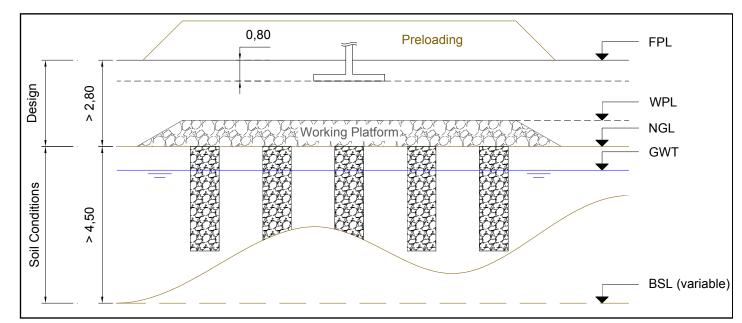

- Increases pore water pressure
- Distocates soil matrix


- (S) And rayleigh waves:
- Shear soil grains
- •Rearrange structure towards denser state

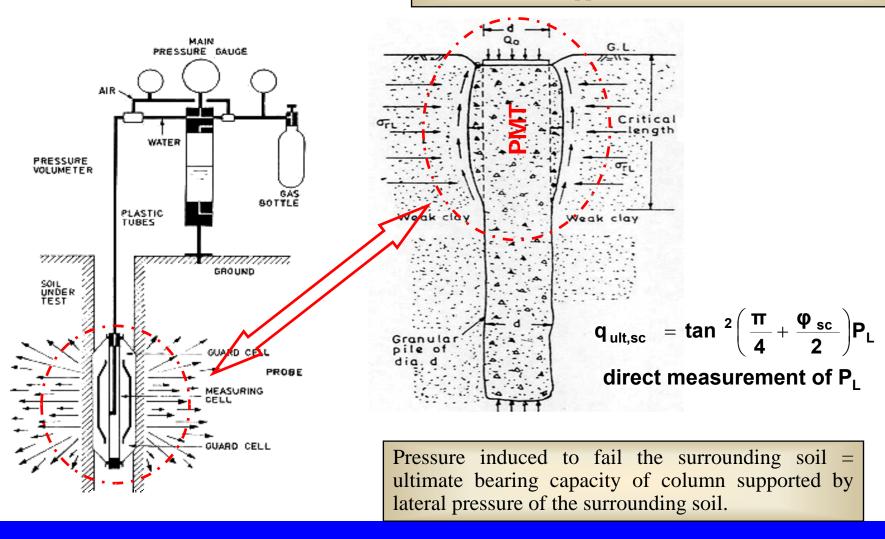
SPECIFICATIONS


- Isolated footings up to 150 tons
 - Bearing capacity 200 kPa
 - Maximum footing settlement 25 mm
 - Maximum differential settlement 1/500
 - Footing location unknown at works stage

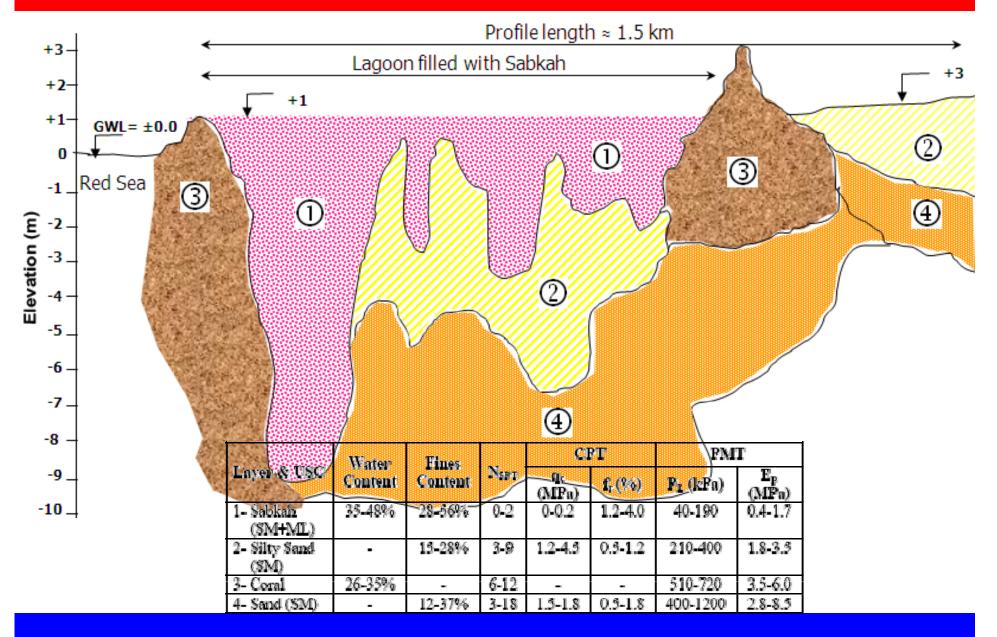
DECISION PROCESS OF SELECTION OF TECHNIQUE



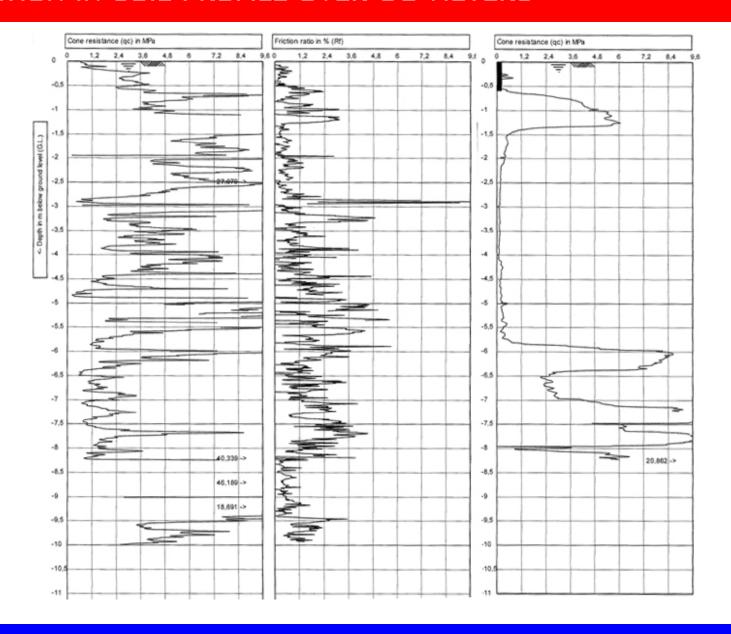
SELECTION OF TECHNIQUE

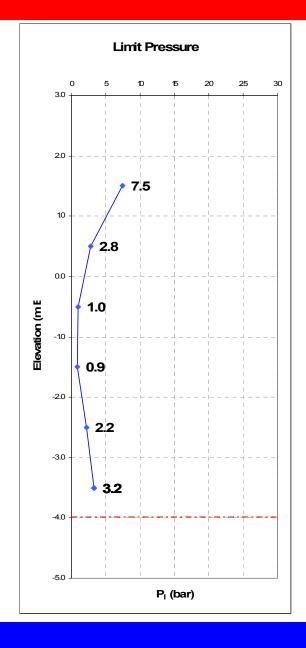

DR (Dynamic Replacement)

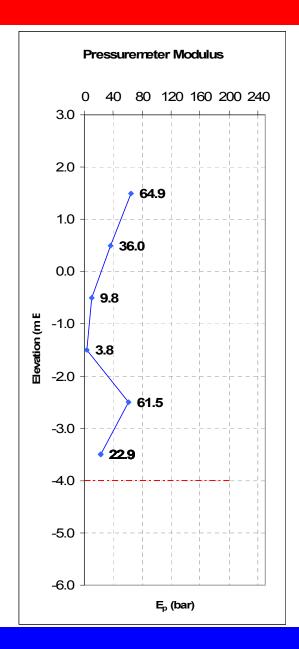
HDR (High Energy Dynamic Replacement) + Surcharge

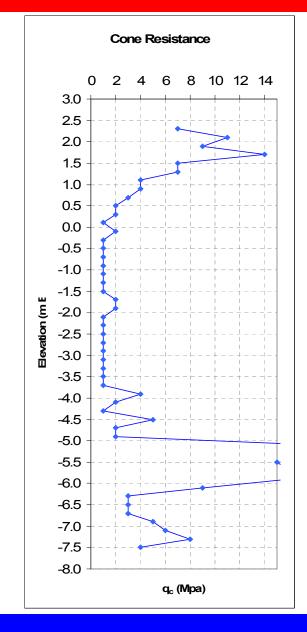


PMT COMPARED WITH LOADING OF COLUMN


PMT loading test applies the *cavity expansion theory* which is similar to granular column bulging under applied vertical load.


TYPICAL SITE CROSS SECTION OF UPPER DEPOSIT



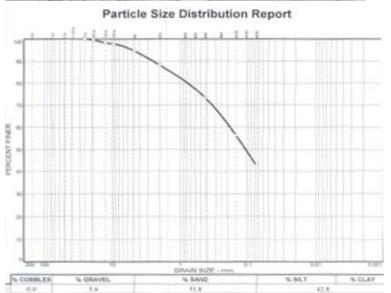

VARIATION IN SOIL PROFILE OVER 30 METERS

TYPICAL SOIL PROFILE

HUMAN RESOURCES

- 1. Project management (4)
- 2. Production team (32)
- 3. Mechanical team (18)
- 4. Survey team (16)
- 5. Administrative team (6)
 - 6. Geotechnical team (8)
 - 7. Safety and Quality (2)
 - 8. Logistic team (4)

TYPICAL SURFACE CONDITIONS



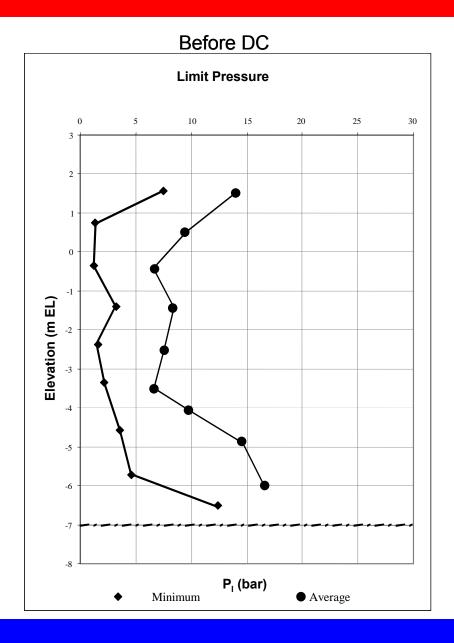
TYPICAL TEST PITS (120) AND GRAIN SIZE

EQUIPMENT RESOURCES

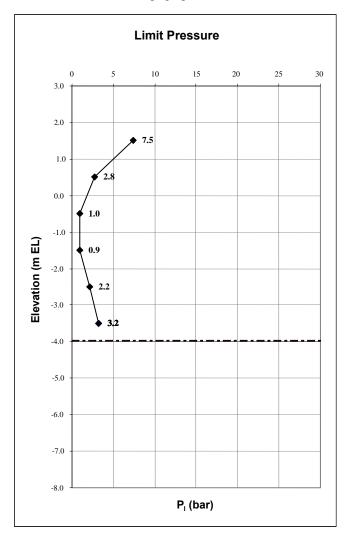
- •13 DC/DR Rigs of 95 to 120 tons
- •15 pounders from 12-23 tons
- •30 vehicles (bus, 4x4, pick-up, berlines)
- •1 truck with crane
- •1 forklift
- •3 CPT rigs
- •1 drill + pressuremeter
- •15 containers
- •1 set of site offices

EQUIPMENT RESOURCES

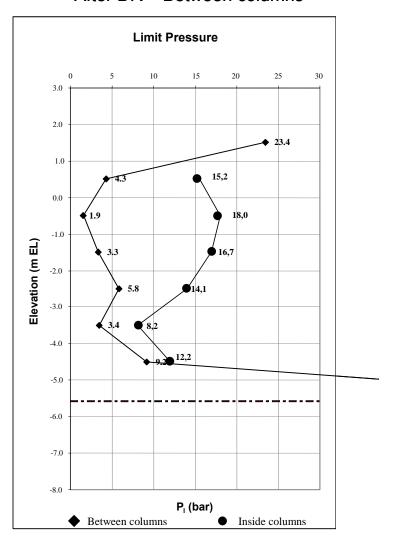
- •13 DC/DR Rigs of 95 to 120 tons
- •15 pounders from 12-23 tons
- •30 vehicles (bus, 4x4, pick-up, berlines)
- •1 truck with crane
- •1 forklift
- •3 CPT rigs
- •1 drill + pressuremeter
- •15 containers
- •1 set of site offices


EQUIPMENT RESOURCES

- •13 DC/DR Rigs of 95 to 120 tons
- •15 pounders from 12-23 tons
- •30 vehicles (bus, 4x4, pick-up, berlines)
- •1 truck with crane
- •1 forklift
- •3 CPT rigs
- •1 drill + pressuremeter
- •15 containers
- •1 set of site offices

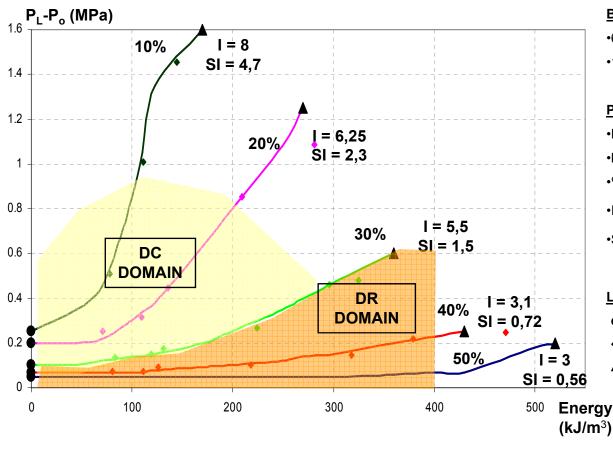


PMT RESULTS BEFORE DC



PMT RESULTS BEFORE AND AFTER DR

Before DR



After DR - Between columns

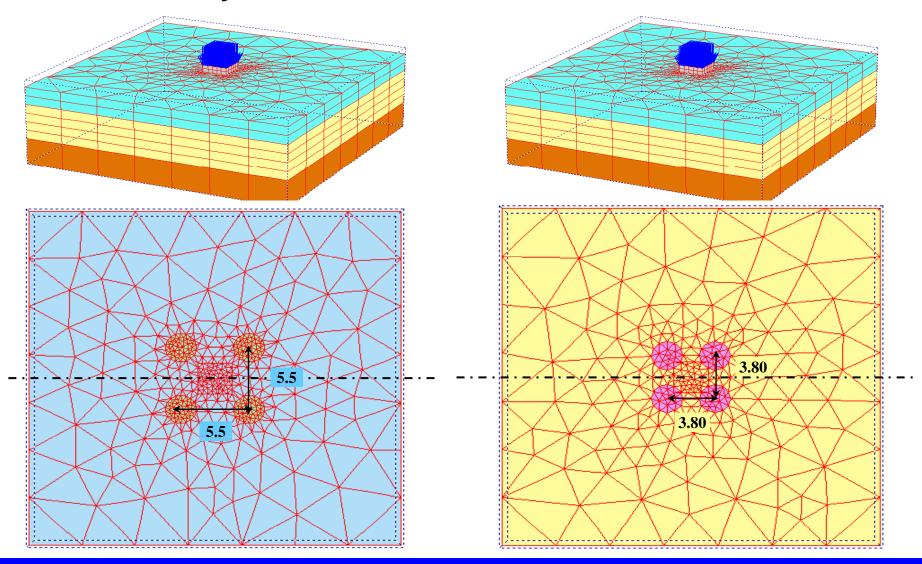
ANALYSIS OF (P_L-P_o) IMPROVEMENT AS FUNCTION OF ENERGY AND FINES

KAUST – Saudi Arabia

BASIS

- •60 grainsize tests
- •180 PMT tests

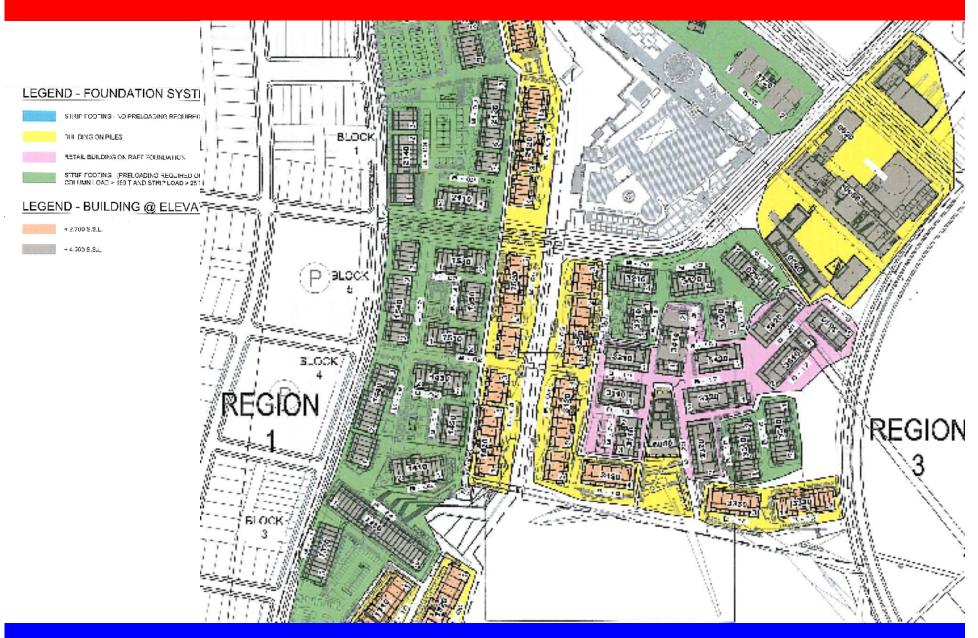
PARAMETERS


- $\cdot P_L P_o =$ pressuremeter limit pressure
- •kJ/m³ = Energy per m³ (E)
- •% = % passing n°200 sieve
- •I = improvement factor $\frac{P_{LF}}{P_{LF}}$
- •S.I : energy specific improvement factor $\frac{I \times 100}{E}$

LEGEND

- Average pre-treatment values
- Average values between phases
 - Average post-treatment values

STRESS DISTRIBUTION


Analysis of Worst Case Scenario for Various Grids

SITE PROCEDURE

- A Identify depth trend of SABKAH by CPT Tests
- B Closely eye witness the penetration of pounder to <u>confirm</u> DC or DR treatment
- C Verify by PMT that factor of safety is at least 3 for bearing capacity
- Verify by stress analysis that limit pressure at any depth exceeds factors of safety of at least 3 in order to safely utilize the settlement analysis (no creep)
- **E Vary the grid to obtain at any location the condition D**
- F Test the gravelly sand columns and check if specified settlement is achieved
- **G** Monitor surcharge if HDR is required

PROVISIONNAL MASTER PLAN

It can be assumed that those impacts do generate a pore pressure at least equal to the pore pressure generated by the embankment load.

This new consolidation process with the final at a time t'_f, where

$$T_{V} = 0.848 = \frac{C'_{V}(t'_{1}-t_{1})}{H^{2}} + \frac{C_{V}T_{1}}{H^{2}}$$

With

$$C'_{V} = C_{V} \left[1 + \frac{du}{\Delta \sigma (1 - U_{1)}} \right]$$

The following equation allows to compare the respective times of consolidation being:

> t'_f with impact t_f without impact

$$t'f = \frac{du}{du + \Delta\sigma(1 - U_1)}t_1 + \frac{\Delta\sigma(1 - U_1)}{du + \Delta\sigma(1 - U_1)}t_f$$

For the considered case,

$$du = U\Delta\sigma$$

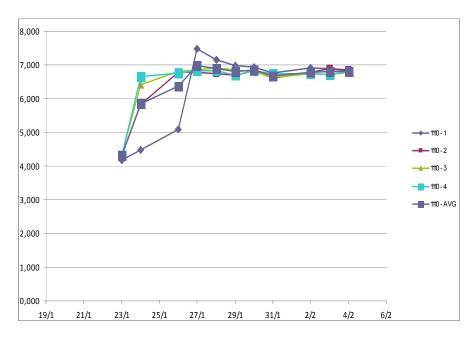
and thus $t_f' = U_1 t_1 + (1 - U_1) t_f$

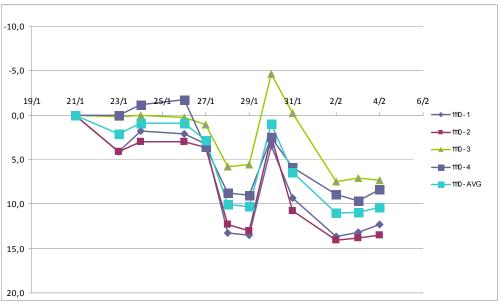
The Table allows to compare the gain in consolidation time, at different degrees of consolidation.

Ч	10%	20%	30%	40%	50%	60%	70%	80%	90%
t _l /t _f	0009	0.037	0.083	0.148	0.231	0.337	0474	0.669	1.00
ť/t _f	0901	0.807	0.725	0.659	0.615	0.602	0632	0.735	1.00

Supposing primary consolidation completed

$$U = 0.9$$
 or $T = 0.848$ if $du=U_1\Delta\sigma$,
then $t'_f = U_1t_1 + (1-U_1)t_f$


The optimal effectiveness occurs around $U_1 = 60\%$.


One can thus conclude that, theoretically the consolidation time is reduced by 20% to 50%, what is for practical purpose insufficient.

DYNAMIC SURCHARGE

SETTLEMENT CURVES FROM DYNAMIC SURCHARGE

GROUND IMPROVEMENT WORKSHOP 11-12 JUNE 2010 PERTH, AUSTRALIA

THANK YOU

