Ground Improvement: Empirical or scientific approach?

Prof ir Jan Maertens Jan Maertens BVBA and Catholic University Leuven

Ground Improvement – General:

Ground Improvement – General:

- = old, but fast growing discipline in civil engineering
- = major topic in geotechnical engineering
- →Technical Committee of ISSMGE on Ground Improvement
- → State-of-the-art-report on ground improvement by Jian Chu and Serge Varaksin for the 17th ICSMGE in Alexandria, October 2009.

Ground Improvement – State-of-the-art-report:

- A good ground improvement method should be based on sound concepts and working principles.
- The notion of "concept" is linked to the art of engineer. It requires:
- the knowledge of the fundamental behaviour of soils
- the knowledge of various ground improvement techniques
- understanding of soil-structure interaction
- the knowledge of performance and limitations of available equipment
- economics

Ground Improvement – Classification:

Classification of ground improvement methods proposed by the TC of ISSMGE:

- A. Ground improvement without admixtures in **non-cohesive soils** or fill materials
- B. Ground improvement without admixtures in **cohesive** soils
- C. Ground improvement with admixtures or inclusions
- D. Ground improvement with grouting type admixtures
- E. Earth reinforcement

Ground Improvement – Classification:

Category	Method	Principle
A. Ground improvement without admixtures in non-cohesive soils or fill materials	A1. Dynamic compaction	Densification of granular soil by dropping a heavy weight from air onto ground.
	A2. Vibrocompaction	Densification of granular soil using a vibratory probe inserted into ground.
	A3. Explosive compaction	Shock waves and vibrations are generated by blasting to cause granular soil ground
		to settle through liquefaction or compaction.
	A4. Electric pulse compaction	Densification of granular soil using the shock waves and energy generated by
		electric pulse under ultra-high voltage.
	A5. Surface compaction (including rapid	Compaction of fill or ground at the surface or shallow depth using a variety of
	impact compaction).	compaction machines.
B. Ground improvement without admixtures in cohesive soils (also see Table 4)	B1. Replacement/displacement (including	Remove bad soil by excavation or displacement and replace it by good soil or rocks.
	load reduction using light weight	Some light weight materials may be used as backfill to reduce the load or earth
	materials)	pressure.
	B2. Preloading using fill (including the	Fill is applied and removed to pre-consolidate compressible soil so that its
	use of vertical drains)	compressibility will be much reduced when future loads are applied.
	B3. Preloading using vacuum (including	Vacuum pressure of up to 90 kPa is used to pre-consolidate compressible soil so that
	combined fill and vacuum)	its compressibility will be much reduced when future loads are applied.
	D4. Dynamic consolidation with enhanced	Similar to dynamic compaction except vertical or horizontal drains (or together with
	drainage (including the use of vacuum)	vacuum) are used to dissipate pore pressures generated in soil during compaction.
	B5. Electro-osmosis or electro-kinetic	DC current causes water in soil or solutions to flow from anodes to cathodes which
	consolidation	are installed in soil.
	B6. Thermal stabilisation using heating or	Change the physical or mechanical properties of soil permanently or temporarily by
	freezing	heating or freezing the soil.
	B7. Hydro-blasting compaction	Collapsible soil (loess) is compacted by a combined wetting and deep explosion
		action along a borehole.

C. Ground	C1. Vibro replacement or stone columns	Hole jetted into soft, fine-grained soil and back filled with densely compacted gravel or sand to form columns.
	C2. Dynamic replacement	Aggregates are driven into soil by high energy dynamic impact to form columns.
		The backfill can be either sand, gravel, stones or demolition debris.
improvement	C3. Sand compaction piles	Sand is fed into ground through a casing pipe and compacted by either vibration,
with admixtures		dynamic impact, or static excitation to form columns.
or inclusions	C4. Geotextile confined columns	Sand is fed into a closed bottom geotextile lined cylindrical hole to form a column.
	C5. Rigid inclusions (or composite	Use of piles, rigid or semi-rigid bodies or columns which are either premade or
	foundation, also see Table 5)	formed in-situ to strengthen soft ground.
	C6. Geosynthetic reinforced column or	Use of piles, rigid or semi-rigid columns/inclusions and geosynthetic girds to
	pile supported embankment	enhance the stability and reduce the settlement of embankments.
	C7. Microbial methods	Use of microbial materials to modify soil to increase its strength or reduce its
		permeability.
	C8 Other methods	Unconventional methods, such as formation of sand piles using blasting and the use
		of bamboo, timber and other natural products.
	D1. Particulate grouting	Grout granular soil or cavities or fissures in soil or rock by injecting cement or other
		particulate grouts to either increase the strength or reduce the permeability of soil or
		ground.
D. Ground	D2. Chemical grouting	Solutions of two or more chemicals react in soil pores to form a gel or a solid
improvement		precipitate to either increase the strength or reduce the permeability of soil or
with grouting		ground.
type admixtures	D3. Mixing methods (including premixing	Treat the weak soil by mixing it with cement, lime, or other binders in-situ using a
	or deep mixing)	mixing machine or before placement
	D4. Jet grouting	High speed jets at depth erode the soil and inject grout to form columns or panels
	D5. Compaction grouting	Very stiff, mortar-like grout is injected into discrete soil zones and remains in a
		homogenous mass so as to densify loose soil or lift settled ground.
	D6. Compensation grouting	Medium to high viscosity particulate suspensions is injected into the ground
		between a subsurface excavation and a structure in order to negate or reduce
		settlement of the structure due to ongoing excavation.
E. Earth reinforcement	E1. Geosynthetics or mechanically	Use of the tensile strength of various steel or geosynthetic materials to enhance the
	stabilised earth (MSE)	shear strength of soil and stability of roads, foundations, embankments, slopes, or
		retaining walls.
	E2. Ground anchors or soil nails	Use of the tensile strength of embedded nails or anchors to enhance the stability of
		slopes or retaining walls.
	E3. Biological methods using vegetation	Use of the roots of vegetation for stability of slopes.

Ground Improvement – General:

- = Many techniques are vailable
- = Several tecniques can be used in very different soils
- ⇒ Analytical design methods will never be available for all combinations technique-soil
- ⇒ Empirism will remain important for the design of ground improvement works

Gerond Improvement – General:

Exampels:

- Vertical drains
- Stone columns
- Deep mixing

Vertical drains – General:

Aim:

- accelerate settlements
- increase bearing capacity

Vertical drains – settlements:

Vertical drains – peloading:

Vertical drains – Design:

The intermediate distance between the vertical drains is determined based on c_v deduced from oedometer tests

Oedometer:

Vertical drains – Design:

Settlement vs. time for a loading step

Load-settlement diagram

Vertical drains – Common design graphs:

21-12-2010

Vertical drains – Common design graphs:

21-12-2010

Vertical drains – Design:

Design graphs based on c_h –value: $c_h = 1,5 \text{ à } 10 \text{ x } c_v$

Common procedure:

- For small projects:
 - \rightarrow conservative c_h value
- For large projects:
 - \rightarrow test field at the beginning
 - \rightarrow extrapolation of obtained results

Vertical drains – Execution:

sand piles

prefabricated vertical drains

21-12-2010

Sandpiles sourrounded with geotextiles:

Installation of prefabricated vertical drains:

Installation of prefabricated vertical drains at TCP terminal:

Installation of prefabricated vertical drains at TCP terminal:

Installation of preload at TCP terminal:

Vertical drains – preloading:

Normally by means of soil Alternative: vacuum

Controll of settlements – prediction: « GOLLARD » VALLEY Embankment performed in 3 phases Surcharge temporaire de 2 m. Phase 3 the the Phase 2 Phase 1 Ph.1 Ph.1_+_Ph.2 Ph.1 + Ph.2 + Ph.3s max = 127cm s (cm.) TASSEMENTS ESTIMES.

Controll of settlements - Measurements:

21-12-2010

Vertical drains – Conclusion:

- Analytical approach based on results of oedometer tests
- Information from previuos projects in similar conditions is very important to:
 - check the c_v values from oedometer tests
 - determine the c_h value
 - become aware of possible anomalies
- Controll of settlements is very important to improve the predictions for future projects.

Vibrocompaction:

Aim:

to increase the relative density of *loose sands/gravels* and to improve:

- the bearing capacity, f.i. underneath isolated foundations
- the stiffness, f.i. underneath foundation slabs
- the shear resistance, f.i. underneath slopes
- to avoid liquefaction

Vibrocompaction:

Execution:

- Horizontal vibrations (= vibroflot nail):
 - wet method
 - dry method
- Vertical vibrations (= vibratory probing)

Vibrocompaction – wet method:

21-12-2010

Vibrocompaction – wet method at TCP terminal:

Vibrocompaction – wet method at TCP terminal:

21-12-2010

Prof ir Jan Maertens at TCP

Vibrocompaction – wet method at TCP terminal:

Vibrocompaction – wet method:

Design:

- Vibrocompaction can only be performed in soils having less than 15% fine particles (< 74µm)
- The intermediate distance between the compaction points is determined based on:
 - the bearing capacity and stiffness to be obtained
 - the available equipment
- In most cases preliminary tests are necessary to determine the intermediate distance to be applied

Vibrocompaction – Design:

<u>Preliminary tests:</u> Typical pattern for

- compaction points
- pre-compaction tests
- post-compaction tests

Vibrocompaction:

Control:

- during execution:
 - energy consumption
 - induced settlements
- after execution:
 - SPT or CPT test

Vibrocompaction - conclusion:

- Analytical approach will never be possible
 ⇒ conservative desgn for small projects
 ⇒ preliminary tests for large projects
- Good knowledge of the soil to be compacted is absolutely necessary (% < 74 $\mu m)$
- Controll methodology is very important
- New methods are developped: example = Rapid Impact Compaction
 - additional compaction is more easy
 - controll during compaction is possible = settlement per blow

Rapid Impact Compaction

- Driving on a steel plate 1 m diameter
- Each Impact point 30-40 blows
- Special Pattern with 2 or 3 passes

• Equipment: BSP

• Depth of influence: up to 6 m

Rapid Impact Compaction:

Stone columns:

<u>Aim:</u>

to improve the bearing capacity and / or the stiffness of *soft clays and soft silts.*

Stone columns:

Execution:

- by driving a steel tube into the soil and filling it up with stones or gravel
- with special equipment (= vibroflot nail) wet or dry method

Stone columns by driving a steel tube:

21-12-2010

Prof ir Jan Maertens at TC

Stone columns with vibroflot nail – wet method:

The Process Penetration	yn	2 Replacement	3 Finishing
Assisted by jetting water, the oscillad vibrator penetratu to the designed depth under its o	g ing es wn r	Once at depth coarse grained backfill material is now filled into the hole down to the toe of the vibrator. By	With stones being added as required this process is repeated up to ground level, leaving on completion a

21-12-2010

Stone columns with vibroflot nail – dry method:

The Production Sequence

1

Vibrator placed on top of the working platform.

Transfer pipe and storage container filled with import materials.

2

Vibrator lowered to desired depth.

Vibrator retracted in 0,5 m (20 in) intervals; import material exits tip.

3

Vibrator lowered again, thereby densifying the import material.

Sequence repeated until optimal densification achieved.

Stone columns – Design:

The intermediate distance between the columns is determined based on:

- the load to be transmitted
- the shear strength of the soil
- the allowable settlements
- the diameter of the stone columns

2 aproaches:

- →Priebe method = plastic deformation of the stone column is allowed
- → Stone column as bearing element = max. load limited to 250 à 350 kN based on static load tests

Stone columns – Static load tests:

Stone columns – Conclusion:

- Stone columns are applicable in almost all soils , except peat
- Analytical approaches are available:
 → Very different behaviour when plastic deformation is allowed or not
- Controll methodology is very important

Soil mixing – General:

Aim:

Stabilise the soil by mixing it with a binder (= cement, lime and/or additives)in order to:

- increase the bearing capacity and / or the stiffness
- realise retaining walls

Soil mixing – General:

Soil and water retaining walls

- temporary (or permanent)
- soil mix determines the bending stiffness of the wall
- bending moments : only the reinforcement (steel beams) is taken into account
- soil mix transfer the ground/water pressures to the reinforcement

Execution:

Special mixing tools have been developed for dry and wet mixing

- 1, 2 or more vertical shafts with mixing blades or augers
- special tools for cutter soil mixing and block stabilisation

C-mix (TWINMIX, TRIPLE C-mix)

- Mainly mechanically mixed
 - High rotation speed
 - Special mixing tool

Prof ir Jan Maertens at TCP

Tubular Soil Mixing (Twin/Triple – soil mix)

- Combination jet-grouting and auger pile techniques
- Mainly hydraulic mixing (up to 500 bar)

Smet

CSM : Cutter Soil Mixer

• Commercialised system to realize panels

Deep mixing – Belgian research:

- UCS = Unconfined Compressive Strength of a large number of cored samples
 - Determination of the characteristic value
 - Increase of strength with time
- Elastic modulus of soilmix material
- Influence of soil inclusions
 - Characterisation of soil inclusions
 - Prediction of influence on strength and stiffness
- Monitoring of soilmix structures

R (N/mm²) 20,00 10,00 15,00 25,00 30,00 40,00 35,00 45,00 0,00 5,00 0 ٠ ٠ ٠ N * ٠ 4 diepte (m) . ٠ . თ ٠ œ ٠ . 10

UCS on core samples Problem:

- large scatter
- determination of the characteristic value

Laboratory tests on soil mix cores (23 sites)

- Tested soil mix material
 - 950 UCS and 100 E-modulus tests
- Uniaxial Compressive Strength (EN 206)
 - Cored soil mix samples Ø 10 cm; height 10 cm

Laboratory tests on soil mix cores (23 sites)

- Interpretation UCS results (EC7)
 - Soil mix cores
 - example: job site Ghent KII in tertiary sand
 - 52 UCS tests
 - Determination of 5% lower fractile UCS
 - Traditionally : Gaussian approach (-0.7 MPa (!))
 - Better (in most cases) : log-normal distribution (5.0 MPa)

- Elastic modulus (NBN B15-203)
 - Test is more difficult (more expensive)
 - Cored soil mix samples Ø 10 cm; height 20 cm

Deep mixing – Belgian research:

- UCS soilmix versus UCS concrete
 - Characteristic UCS < 60% Average UCS
 - UCS column type > UCS of CSM
 - Standard variation UCS of column type > CSM
 - Variation depends on experience of contractor
- Elastic modulus \approx 1000 x UCS
- Problem: unknown influence of soil inclusions

Deep mixing – Soil inclusions:

- Criteria needed to deal with cored samples presenting soil inclusions
- Proposal BBRI (Belgian Building Research Institute) If inclusion > Diameter/6 then exclusion of test sample maximum 15% of test samples may be excluded

Deep mixing – Soil inclusions:

Further research:

a) testing of large scale samples

b) numerical modelling

21-12-2010

Prof ir Jan Maertens at TCP

Deep mixing – Large scale testing:

Deep mixing – Large scale testing:

Deep mixing – Large scale testing:

Deep mixing – Large scale testing:

The results of the large scale tests are compared with the UCS values determined on cored samples

Deep mixing – Numerical modelling:

For different quantities shapes of inclusions Example: quantity of inclusions

21-12-2010

Deep mixing – Numerical modelling:

First results : Influence of the number of inclusions on the elastic modulus

Deep mixing – Conclusion:

- Analytical design is not possible for all combinations:
 - execution method
 - soil type
 - amount of binder
- Controll methodology is very important for retaining walls
- Interpretation of Unconfined Compressive Strength difficult:
 - large scatter
 - influence of soil inclusions

Deep mixing – Conclusion:

- \Rightarrow Large scale testing
- \Rightarrow Numerical modelling
- ⇒ Research program of the BBRI is a good example of how to deal with new methods/materials:
 - Testing by one single organisation
 - Uniform interpretation method
 - Additional research to improve the interpretation

General conclusion:

- Design of ground improvement works will always remain a combination of analytical design and empirism
 - \rightarrow both approaches are necessary
 - \rightarrow cooperation academics contractors
- Research projects are helpfull/necessary to:
 - better understand influence of execution details
 - improve empirism
 - improve cooperation academics contractors
- Research projects will never lead to general analytical design methods

General conclusion:

- Important also are:
 - clear communication
 - clear controll methodology
- Exchange of experiences will remain very important
 - → TC Ground Improvement of ISSMGE
 - \rightarrow www.bbri.be/go/tc17

