ELLER

Real-time quality monitoring and result verification by static and dynamic trial loading of piles in marine clay

Jimmy Wehr, Keller Holding GmbH,

Mario Andreas, Björn Böhle, Keller Grundbau GmbH, Matthias Schallert, Oswald Klingmüller, GSP mbH

Contents

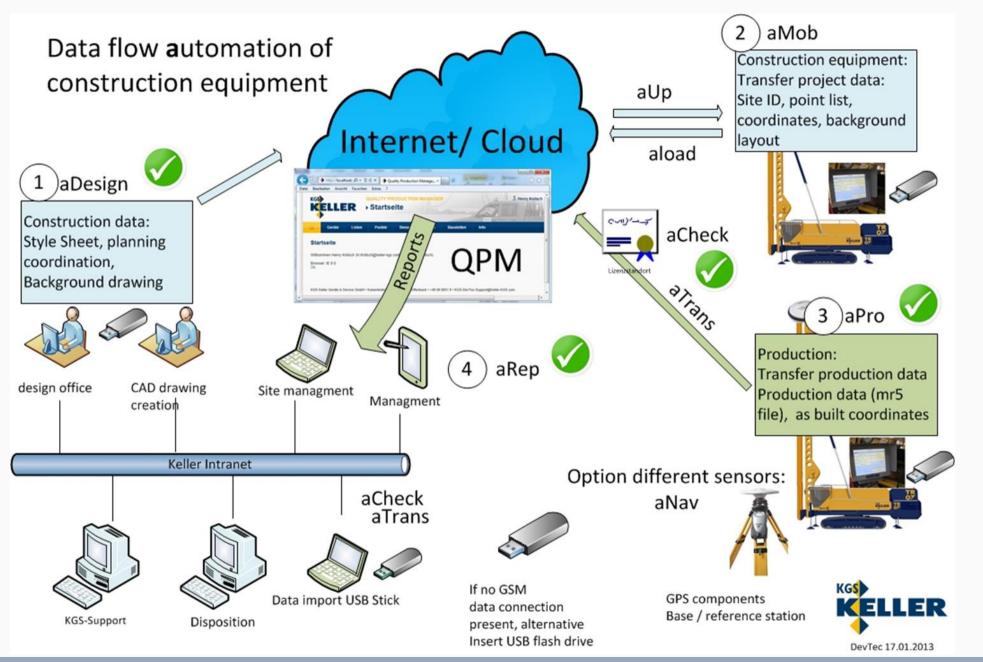
- real time quality monitoring
- verification of results: comparison of static and dynamic load tests in Constance
- summary

Real time quality control

ForBAU – die digitale Baustelle (Quelle: ediundsepp Gestaltungsgesellschaft)

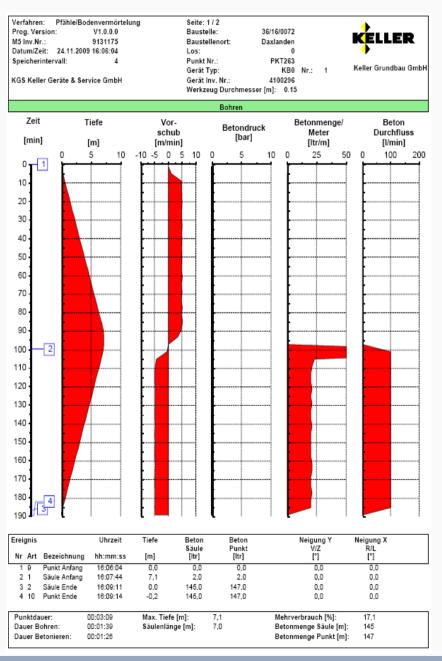
Keller quality production manager

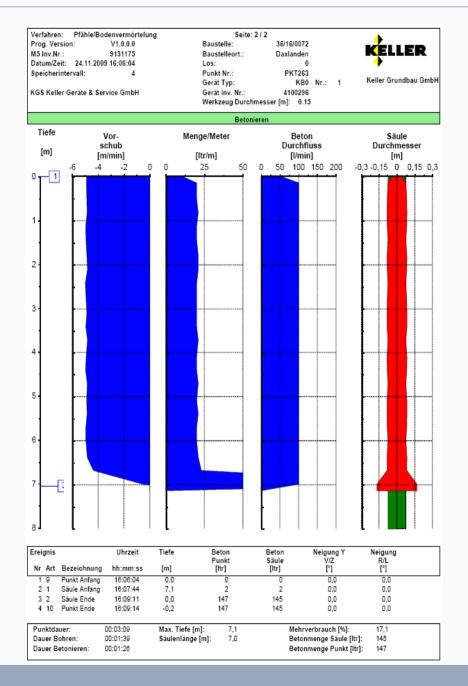
- Device management: easy finding of devices
- Remote maintenance: monitoring of maintenance intervalls, identification of idle times, theft protection
- Site management: effective use, report generation, CAD plans on site, quality and claim management





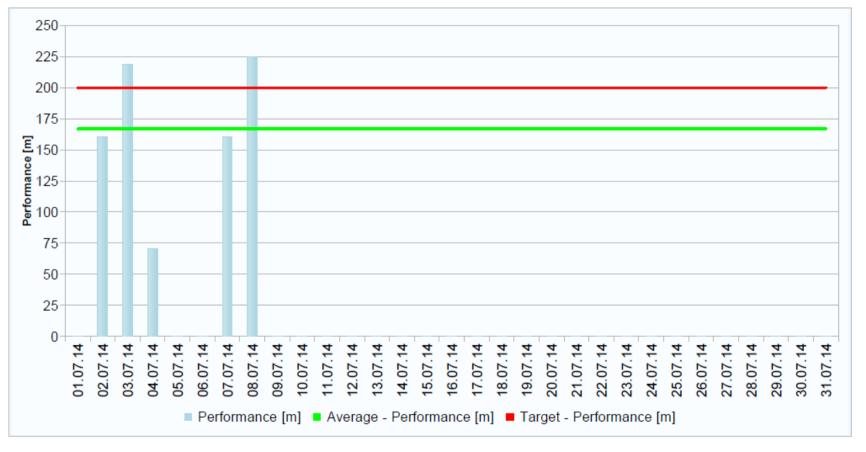
Data flow automation


Easy finding of the devices



KGS Keller Geräte & Service GmbH · Kaiserleistrasse 8 · D-63067 Offenbach · +49 69 8051 D · KGS-DevTec-Support@Keller-KGS.com

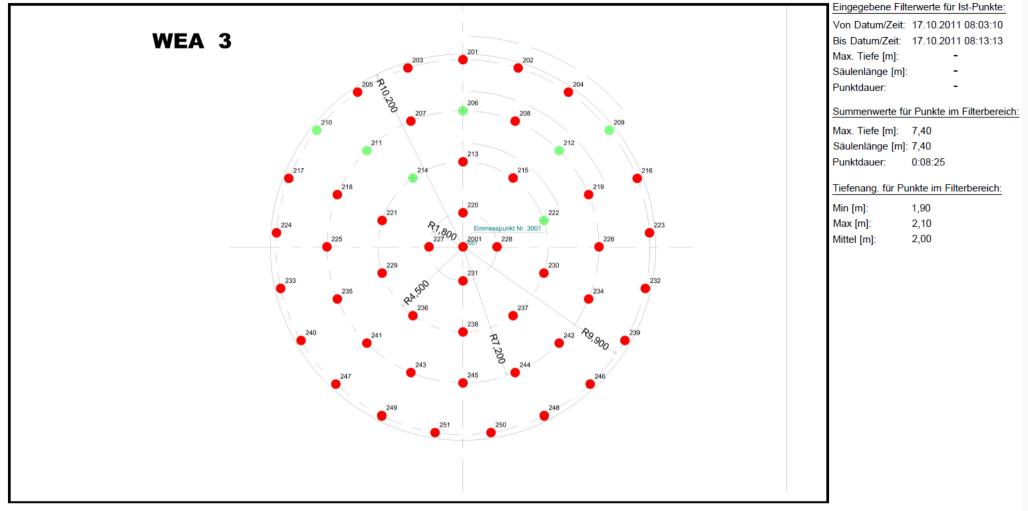
Automatic reports per pile



KELLER

Automatic reports per shift

Site Location:	Strasbourg	Rig Name:	TR100_TYP05	Technic:		
Site Name:	Nexity	Rig Inv. No.:	41000291	Total Points:	198	
Site Number:	132338	Total Production Days:	5	Total Treatment Depth [m]:	834.78	
Lot:	Bâtiment A			Target Performance / Day [m]:	200.00	RELLER
				Average Performance / Day [m]:	166.96	
Time Range P	Protocol (Local Time): 01.06.20	014 00:00:00 - 23.06				



- Page 1/1 -

Created (UTC Time): 23.06.2015 10:25:57

Automatic reports per area

Baustellen Nr: 110554

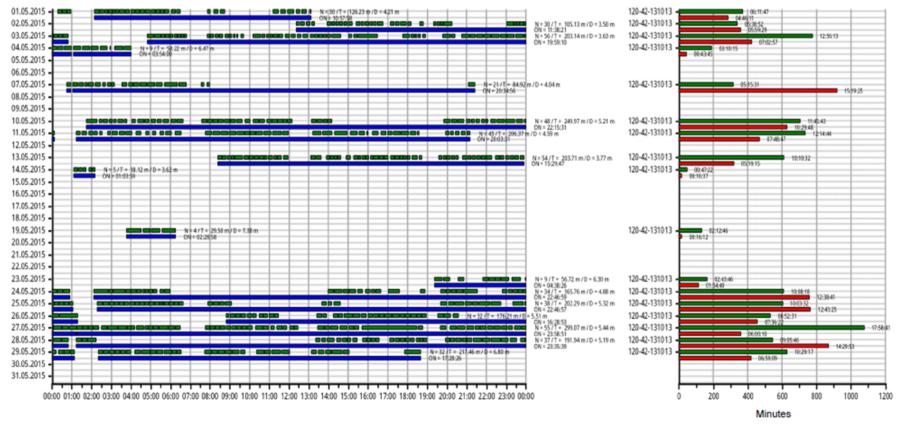
Bilanz für alle Punkte:

Anzahl der Soll-Punkte:	52-7=45	
Anzahl der Ist-Punkte:	7	
Anzahl Ist-Punkte im Filterbereich:	3	Ð
erbrachte Leistung für Ist-Punkte:	13,46	%
Anzahl zusätzlich ausgeführter Punkte (keine Koor. vorhanden):	0	

Baustellen Name/Ort: Windanlage Flamborn

Dateiressourcen:

Koordinaten: Flomborn_F12409a.Kor Parameter: LogVis_CadVis.lvcv Zeichnung: F12409-1a-WEA3-o-Nr.dxf .mr5: Bsp Tiefrütteln 2.mr5


Fast overview of different sites

KGS			Y PRODUCTION M			1 al	🏅 Henry Kr	nitsch 📕	Deutsch 💌
	LER	Baı	istellen ⊧ Lis	te der	Baustelle	n ,			
ය Gerä	te Bauste	ellen	Services Sicherh	eit N	lanagement A	dmin Info			
Ŭ	 Volltextsuche: Gesucht wird in Baustellen-Nummer, -Name, -Straße und -Stadt. Baustelle: Alle Los: Alle Von: 04.02.2013 Bis: 25.02.2013 neu laden 								
Baustellen Nr.	Baustellen Ort	Los	Produkt	Anzahl Soll [Stück]	Punkte Ist [Stück]	Erbrachte Leistung [m]	Land	Bereich Bez.	Bereich
010043	Gdansk Wielopole	No Lot	Soilcrete_D/DS_SPS _KB6 - V2.6.2.05 - 6100	4711	173 💕	5036 🚺	Polen		
010043	Gdansk Wielopole	No Lot	Soilcrete_D/DS_SPS _KB6 - V2.6.2.06 - 6100	4711	37 🔯	996 🗾	Polen		
786	Vizag	01	Tiefenrüttelverfahren TR04/M5 - V1.0.2.02 - 5100	4711	8 💕	74 👥	Indien		
3502211011 1	PRESLES EN BRIE	1	Pfähle/Bodenvermört elung_LRB125_Digita I - V1.0.2.02 - 5210	4711	387 🔯	125171 👥	Frankreich	Agence Paris (Ile de France)	SWE

Fast overview of production data

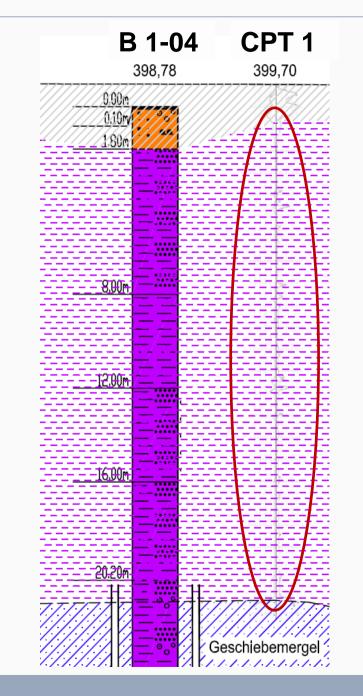
Site Location:	Safi	Rig Name:	M5_Crane_Box	Technic:		
Site Name:	New Port of Safi	Rig Inv. No.:	72901419	Total Points:	1.141	
Site Number:	120-42-131013	Total Production Days:	36	Total Treatment Depth [m]:	6,349.09	KELLER
Lot:	ALL	Total Production Time (Green):	311:52:28	Treatment Depth Average / Day [m]:	176.36	RELLER
		Total Down Time (Red):	273:16:27	Treatment Depth Average / Point [m]:	5.56	
Time Range P	rotocol (Local Time):	01.05.2015 00:00:00 - 30.06				


Site No.

- Page 1/4 -

Created (UTC Time): 22.06.2015 00:38:52

help at any time – Remote Diagnosis



Result verification, Test field in Constance

The soil consists of:

▶3 m fill,

- Marine clay, very soft to soft and
- Firm marl from 25 m on
- Water table at -1,5m

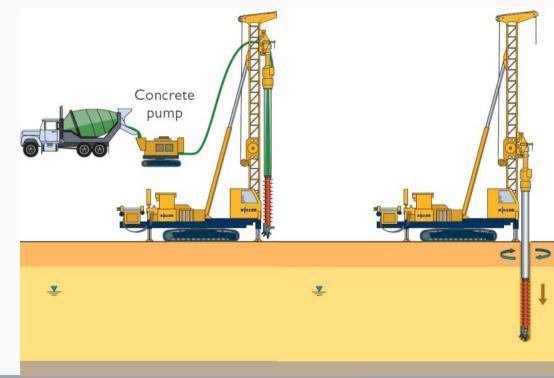
Planning of load tests in Constance

Aim of load tests

Direct comparison in homogeneous soil of

- Displacement concrete pile (FDP),
- Vibro-concrete columns (VCC),
- Vibro-mortar columns (VMC)

Direct comparison of static and dynamic load tests



Displacement concrete piles

Brand names: FDP, VBP, CMC...

- Bored piles according to DIBT German (Execution and design)
- Execution according to EN 12699 (pile mimimum reinforcement required, cu>

Design according to EN 1997-1 und D

 Deutsches Institut für Bautechnik Anstalt des öffentlichen Rechts
 DDBC

 Deutsches Verlas für Bauschrik, Pertineh 42/02 28, Vol/92 Berlin
 Eine vom Bund und den Länstern gemeinsem getragene Einstellung

 Die detides Verlas für Bauschrik, Pertineh 42/02 28, Vol/92 Berlin
 Eine vom Bund und den Länstern gemeinsem getragene Einstellung

 Millglied der Europäischen Organisation für Technische Zulassungen EOTA
 Telefon 030 78/730-0 Telefon 030 78/730-0

 Geschäftszeichen (ofte immer angeberie)
 Boertoliter
 Telefon 030 78/730-229

Allgemeine beueufsichtliche Zulassung für CMC-Säulen

Ihr Schreiben vom 21.06.2004

Sehr geehrte Damen und Herren,

in ihrem o.g. Schreiben beantragten Sie eine allgemeine bauaufsichtliche Zulassung für die Herstellung von CMC - Säulen. Das Verfahren zur Herstellung dieser Säulen wird im Schreiben von Herm Dr.-Ing. Borchert, Geotechnik und Dynamik Consult GmbH, vom 14.09.2004 beschrieben und erläutert.

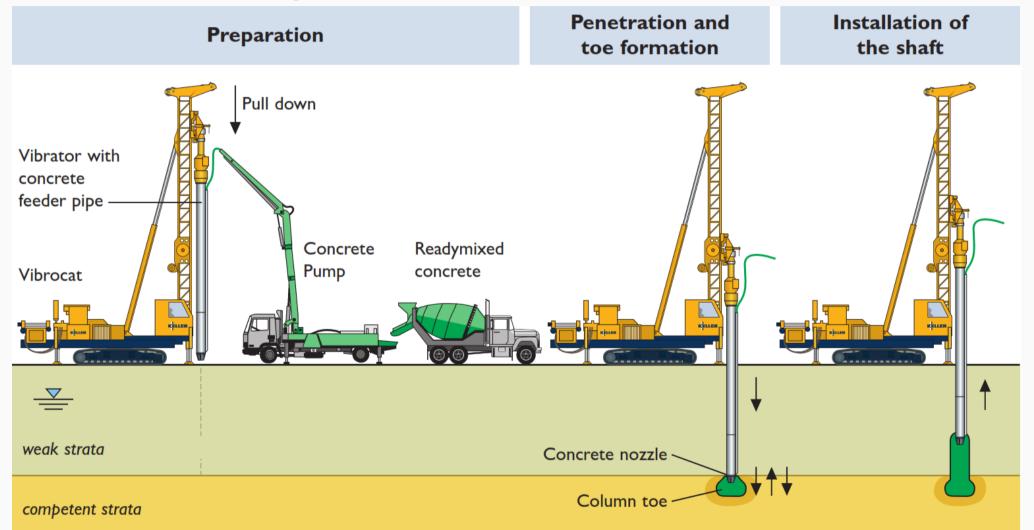
Aufgrund der uns vorliegenden Unterlagen sind wir der Auffassung, dass das Verfahren zur Herstellung der CMC – Säulen keine wesentliche Abweichung von der DIN 4014 darstellt. Aufgrund dessen handelt es sich bei Ihrem System zur Herstellung von CMC - Säulen um eine geregelte Bauart.

Die Erteilung einer allgemeinen beuaufsichtlichen Zulassung ist daher nicht erforderlich

Mit freundlichen Grüßen

Falle

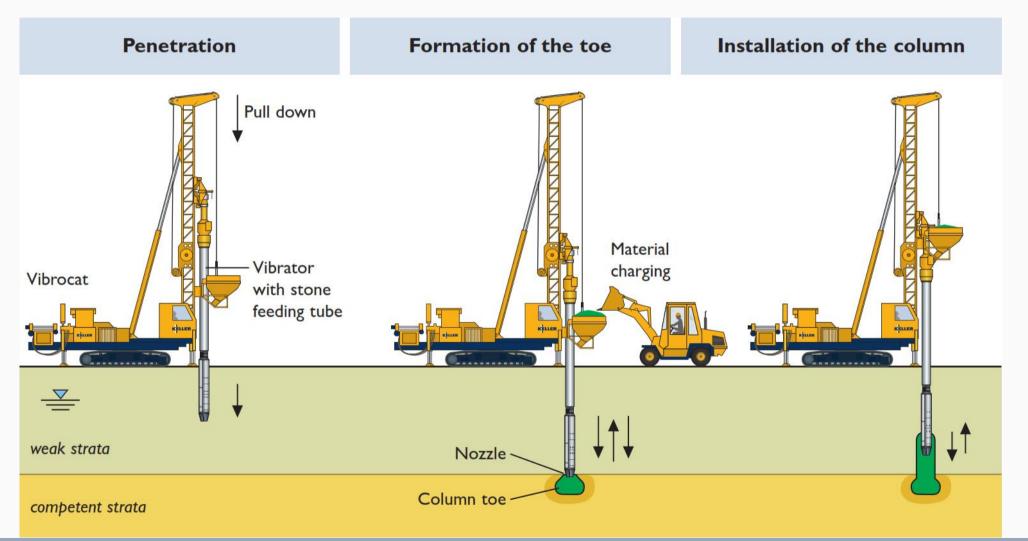
Quelle: Bauer Maschinen GmbH


19. Januar 200!

Vibro-concrete columns

Brand names: VCC, BRS...

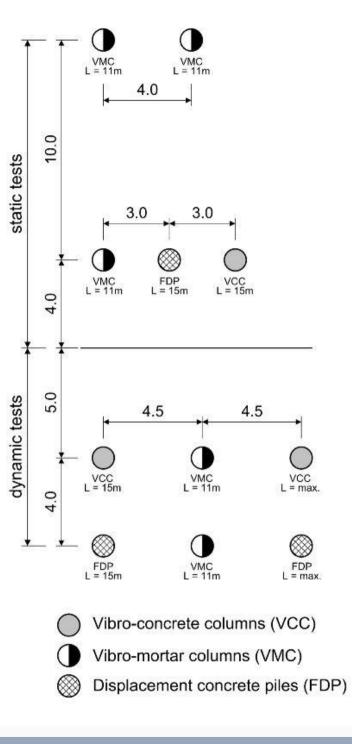
DIBT Zulassung



Vibro-mortar columns

Brand names: VMC, BSS,...

DIBT Zulassung



Load tests in Constance

Static and dynamic load tests:

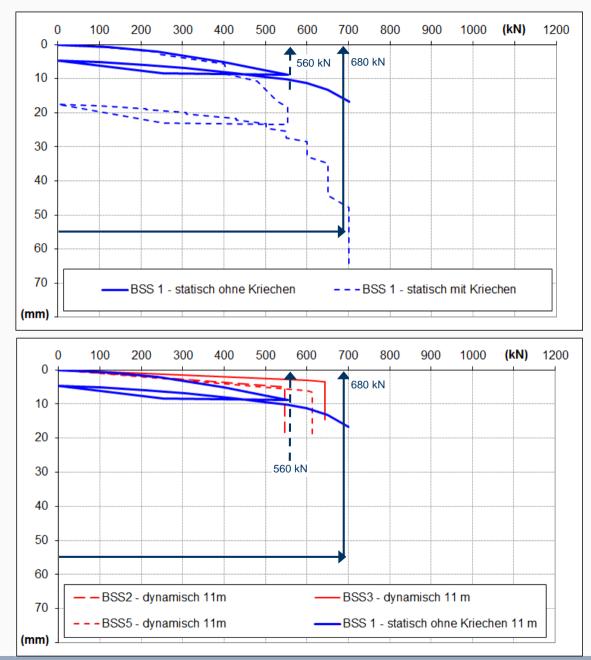
- 1. Displacement concrete piles (FDP)
- 2. Vibro-concrete columns (VCC),
- 3. Vibro-mortar columns (VMC),

Floating foundation!

Static load test in Constance

Dynamic load test in Constance

Comparison of results

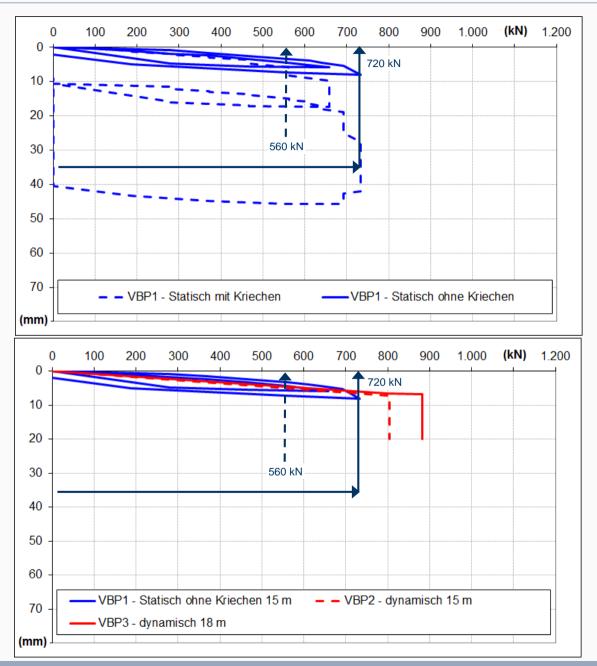

Overview of the column systems							
	FDP	FDP	VCC	VMC			
		(tension)					
chosen	0.35	0.35	0.45	0.55			
average							
column							
diameter							
[m]							
Column	15.00	18.00	15.00	11.00			
length							
[m]							
Column	C20/25, F3, 32 mm, XC3			240 kg/m ³ binder,			
material				CEM I-III 32,5,			
				Particle size 2/4-32			

• Bearing capacity at s = 0,1D or $k_s = 2mm$; creep decisive

- Displacement concrete pile FDP: dyn./ stat. bearing capacity with deviation of up to 30% not satisfactory.
- Vibro-concrete columns VCC and Vibro-mortar columns VMC: dyn./ stat. bearing capacity with deviation of only 5 % very good.

Comparison of results

VCC


<u>Static:</u> with + without creep

Creep settlements: 46 mm 58 mm

Dynamic: no creep settlements

Comparison of results

FDP

<u>Static:</u> with + without creep

Creep settlement: 38 mm

Dynamic: No creep settlement

Calibration and geotechnical analysis:

- ✓ Limit load was reached (static and dynamic)
- ✓ Creep considered in design
- ✓ Comparable deformations at servicebility load
- ✓ Good agreeement wiht results
- ✓ Several dynamic tests
 - ✓ Show negligable inhomogeneity of the soil
 - ✓ Increase the safety of the structure

Summary

In Constance, full-displacement concrete piles (FDP), vibro-concrete columns (VCC) and vibro-mortar columns (VMC) were installed and tested for their load-bearing capacity in the lacustrine clay.

In their manufacture, an on-line quality monitoring and verification system was used during installation to monitor productivity.

Using floating construction of the columns/piles, high axial limit loads of up to 850 kN were achieved. This shows amazing potential in comparison with previously estimated loads of only half this figure.

For vibro-concrete columns and vibro-mortar columns, axial static and dynamic test loads agree very well, with a deviation of only 5 %; they are thus suitable for these foundation elements. And this example also demonstrated that dynamic load testing is also applicable in cohesive soils.

The fairly large difference to the statically determined load on a full-displacement pile was unsatisfactory.

Outlook

Further research will have to determine whether the excess pore-water pressure dissipates faster during dynamic installation due to the tumbling motion of the depth vibrator, and thus leads to realistic loads.

To this end, a comparison of static and dynamic analysis with the Finite Element Method is planned. This will allow the influence of pore water in cohesive soils to be considered.

The results of this research, which will require validation by field tests, should provide useful information for further development of the recommendations of the Working Group on piles regarding dynamic load testing as a function of the evaluation method for cohesive soils.

Thank You!

ELLER

www.KellerHolding.com