XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

TC211 Workshop

CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS

Jérôme Racinais September 15,

- **1.** Reminder about pressuremeter tests
- 2. General behaviour of rigid inclusions
- **3.** Rigid inclusions design based on Finite Elements Models
- 4. Semi-empirical mobilization laws of Frank & Zhao
- 5. Calibration of FEM input parameters on Frank & Zhao's laws
- 6. Example: Plate Load Tests in Venette, France
- 7. Conclusion

1. Reminder about pressuremeter tests

Determination of E_m and p_l

$$\mathbf{E_m} = 2(1+\nu) \left[V_{\rm S} + \frac{V_1 + V_2}{2} \right] \times \frac{p_2 - p_1}{V_2 - V_1}$$

Jérôme RACINAIS

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

2. General behaviour of rigid inclusions

$$\mathbf{Q}_{\mathbf{P}}(\mathbf{0}) + \mathbf{F}_{\mathbf{N}} = \mathbf{Q}_{\max} = \mathbf{F}_{\mathbf{P}} + \mathbf{Q}_{\mathbf{P}}(\mathbf{L})$$

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

3. Rigid inclusions design based on Finite Element Models

Jérôme RACINAIS

3. Rigid inclusions design based on Finite Element Models

Use of linear elastic perfectly plastic law with Mohr-Coulomb's failure criterion

• Main basic parameters

- Young's modulus E_Y
- Poisson's ratio v
- Unit weight γ
- Effective cohesion c'
- Effective friction angle φ'
- Which values should be input ?
 - $E_Y = \frac{E_m}{\alpha}$?
 - c' and ϕ ' determined from lab tests ?

Behaviour at the inclusion bottom

$$k_q = \frac{11E_M}{B}$$
 for fine-grained soils, $k_q = \frac{4.8E_M}{B}$ for granular soils

B : inclusion diameter

Jérôme RACINAIS

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

• Estimation of the limit end-bearing pressure: q_b (as per Appendix F of Standard NF P94-262)

 ${p_{\text{le}}}^{*}$: equivalent net limit pressure into the anchoring layer $\mathbf{q}_{\mathbf{b}} = \mathbf{k}_{\mathbf{p}} \mathbf{p}_{\mathbf{le}}^*$ k_{n} : pressuremeter bearing factor Inclusion with soil displacement P_i^{*} a = max $\left\{\frac{B}{2}; 0.5\right\} = 0.5 \text{ m}$ 3 Å 2 $b = min\{a; h\} = 0.5 m$ Pieu h b = 0.5 mD+3aΩ В $p_{le}^* = \frac{1}{b+3a} \int p_l^*(z)dz$ 2 3 0 5 6 Clay, Silt, Transitional soils D_{ef}/B 3a = 1.5 m Sand, Gravel, Transitional soils Chalk Marl, Marly limestone, Weathered and fragmented tock Inclusion with soil extraction 3 z 2 Å $D_{ef} = \frac{1}{p_{le}^*} \int_{D-h_D}^{D} p_l^*(z) dz$ D h_D = 10B 2 3 5 0 4 6 D_{ef}/B $h \ge 0.5 m$ Clay, Silt, Transitional soils Sand, Gravel, Transitional soils $h_D = 10B$ (is comprised between 3 m to Chalk, Marl, Marly limestone 4.2 m) Weathered and fragmented tock

Jérôme RACINAIS

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

7

7

8

8

Behaviour along the interface soil/inclusion

XVI ECSMGE 2015

13-17 September 2015 - Edinburgh

$$k_{\tau} = \frac{2E_{M}}{B}$$
 for fine-grained soils, $k_{\tau} = \frac{0.8E_{M}}{B}$ for granular soils

BG/

• THE BRITISH • GEOTECHNICAL ASSOCIATION 9/23

B : Inclusion diameter

• Estimation of the limit skin friction: q_s (as per Appendix F of Standard NF P94-262)

 $\mathbf{q}_{s} = \min\{\alpha_{\text{pieu-sol}} \times \mathbf{f}_{\text{sol}}(\mathbf{p}_{l}^{*}); \mathbf{q}_{s;\max}\}$

 $\alpha_{pieu-sol}$: dimensionless parameter depending on pile type and soil type f_{sol} : function depending on soil type and p_l^* value

Jérôme RACINAIS

5. Calibration of FEM input parameters on Frank & Zhao's laws

• Skin friction (along the inclusion in surrounding soil)

Load at the inclusion bottom (in the anchoring layer)

menard

5. Calibration of FEM input parameters on Frank & Zhao's laws

Pressuremeter tests

Presentation of the finite element model – initial parameters

XVI ECSMGE 2015

13-17 September 2015 - Edinburgh

• Skin friction

	Ŷ	c'	φ'	E _Y	R _{inter}
	[kN/m³]	[kPa]	[°]	[MPa]	[-]
Fill	20	11	25	$= E_M / \alpha = 30$	1
Silts	20	6	31	$= E_M / \alpha = 11$	1
Interface Sands	16.5	0	43	$= E_{M}/\alpha = 105$	1

Inclusion bottom behaviour

	Ŷ	C'	φ'	E _Y
	[kN/m³]	[kPa]	[°]	[MPa]
Sands	16.5	0	43	= Ε _Μ /α = 105

 Load test curve with initial parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

Jérôme RACINAIS

 Load test curve with initial parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

 Load test curve with initial parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

→ adjust modelling parameters to calibrate the Plaxis curve on Frank & Zhao's semi-empirical laws

Jérôme RACINAIS

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

Calibrated parameters

• Skin friction

	Ŷ	C'	φ'	Eγ	R _{inter}
	[kN/m³]	[kPa]	[°]	[MPa]	[-]
Fill	20	80	0	30	1
Silts	20	60	0	11	1
Interface Sands	16.5	170	0	157.5	1

Inclusion bottom behaviour

	Ŷ	C'	φ'	E _Y
	[kN/m³]	[kPa]	[°]	[MPa]
Sands	16.5	650	0	1 x E _M /α, 1.5 x E _M /α, 3 x E _M /α ?

Jérôme RACINAIS

 Load test curve with calibrated parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

	Ŷ	C'	φ'	E _Y
	[kN/m³]	[kPa]	[°]	[MPa]
Sands	16.5	650	0	= 1.5 x E _M /α = 157.5

 Load test curve with calibrated parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

	Ŷ	C'	φ'	E _Y
 	[kN/m³]	[kPa]	[°]	[MPa]
Sands	16.5	650	0	= 1.5 x E _M /α = 157.5

XVI ECSMGE 2015

13-17 September 2015 - Edinburgh

 Load test curve with calibrated parameters – Comparison with Frank and Zhao's mobilization laws

At inclusion bottom

	Ŷ	C'	φ'	E _Y
	[kN/m³]	[kPa]	[°]	[MPa]
Sands	16.5	650	0	= 1.5 x E _M /α = 157.5

21/23

THE BRITISH

GEOTECHNICAL

13-17 September 2015 - Edinburgh

 Load test curve with calibrated parameters – Comparison with insitu load test

Jérôme RACINAIS

XVI ECSMGE 2015 13-17 September 2015 - Edinburgh

- Classical determination of the FE input parameters is often very conservative
- The calibration of the input parameters on the empirical curves from Frank & Zhao allows to better simulate the rigid inclusion behaviour
- The Frank & Zhao curves require the use of the pressuremeter test parameters E_m et p_l
- Three modelling parameters need to be calibrated:
 - Effective cohesion
 - Effective friction angle
 - Young's modulus

Thank you for your attention

